Relative demicompactness properties for exponentially founded $C$-semigroups
Izvestiâ vysših učebnyh zavedenij. Matematika, no. 6 (2022), pp. 3-12
Voir la notice de l'article provenant de la source Math-Net.Ru
Let $C$ be an invertible bounded linear operator on a Banach space $X$. In this paper, we use the concept of relative demicompactness in order to investigate some properties for an exponentially bounded $C$-semigroup $(T(t))_{t\geq0}$. More precisely, we prove that the relative demicompactness of $T(t)$ for some positive values of $t$ is equivalent to the relative demicompactness of $C-A$ where $A$ is the infinitesimal generator of $(T(t))_{t\geq0}$. In addition, we study the relative demicompactness of the resolvent. Finally, we present some conditions on exponentially bounded $C$-semigroups in Hilbert space guaranteeing the relative demicompactness of $AC$.
Keywords:
C-semigroup, relative demicompact linear operator, Hilbert space.
@article{IVM_2022_6_a0,
author = {H. Benkhaled and A. Elleuch and A. Jeribi},
title = {Relative demicompactness properties for exponentially founded $C$-semigroups},
journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika},
pages = {3--12},
publisher = {mathdoc},
number = {6},
year = {2022},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/IVM_2022_6_a0/}
}
TY - JOUR AU - H. Benkhaled AU - A. Elleuch AU - A. Jeribi TI - Relative demicompactness properties for exponentially founded $C$-semigroups JO - Izvestiâ vysših učebnyh zavedenij. Matematika PY - 2022 SP - 3 EP - 12 IS - 6 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/IVM_2022_6_a0/ LA - ru ID - IVM_2022_6_a0 ER -
H. Benkhaled; A. Elleuch; A. Jeribi. Relative demicompactness properties for exponentially founded $C$-semigroups. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 6 (2022), pp. 3-12. http://geodesic.mathdoc.fr/item/IVM_2022_6_a0/