Relative demicompactness properties for exponentially founded $C$-semigroups
Izvestiâ vysših učebnyh zavedenij. Matematika, no. 6 (2022), pp. 3-12.

Voir la notice de l'article provenant de la source Math-Net.Ru

Let $C$ be an invertible bounded linear operator on a Banach space $X$. In this paper, we use the concept of relative demicompactness in order to investigate some properties for an exponentially bounded $C$-semigroup $(T(t))_{t\geq0}$. More precisely, we prove that the relative demicompactness of $T(t)$ for some positive values of $t$ is equivalent to the relative demicompactness of $C-A$ where $A$ is the infinitesimal generator of $(T(t))_{t\geq0}$. In addition, we study the relative demicompactness of the resolvent. Finally, we present some conditions on exponentially bounded $C$-semigroups in Hilbert space guaranteeing the relative demicompactness of $AC$.
Keywords: C-semigroup, relative demicompact linear operator, Hilbert space.
@article{IVM_2022_6_a0,
     author = {H. Benkhaled and A. Elleuch and A. Jeribi},
     title = {Relative demicompactness properties for exponentially founded $C$-semigroups},
     journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika},
     pages = {3--12},
     publisher = {mathdoc},
     number = {6},
     year = {2022},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/IVM_2022_6_a0/}
}
TY  - JOUR
AU  - H. Benkhaled
AU  - A. Elleuch
AU  - A. Jeribi
TI  - Relative demicompactness properties for exponentially founded $C$-semigroups
JO  - Izvestiâ vysših učebnyh zavedenij. Matematika
PY  - 2022
SP  - 3
EP  - 12
IS  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IVM_2022_6_a0/
LA  - ru
ID  - IVM_2022_6_a0
ER  - 
%0 Journal Article
%A H. Benkhaled
%A A. Elleuch
%A A. Jeribi
%T Relative demicompactness properties for exponentially founded $C$-semigroups
%J Izvestiâ vysših učebnyh zavedenij. Matematika
%D 2022
%P 3-12
%N 6
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IVM_2022_6_a0/
%G ru
%F IVM_2022_6_a0
H. Benkhaled; A. Elleuch; A. Jeribi. Relative demicompactness properties for exponentially founded $C$-semigroups. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 6 (2022), pp. 3-12. http://geodesic.mathdoc.fr/item/IVM_2022_6_a0/

[1] Davies E.B., Pang M.M.H., “The Cauchy problem and a generalization of the Hille–Yosida theorem”, Proc. London Math. Soc. (3), 55:1 (1987), 181–208 | DOI | MR | Zbl

[2] Delaubenfels R., “C-semigroups and the Cauchy problem”, J. Funct. Anal., 111 (1993), 44–61 | DOI | MR | Zbl

[3] Miyadera I., Tanaka N., “Exponentially bounded C-semigroups and generation of semigroups”, J. Math. Anal. Appl., 143 (1989), 358–378 | DOI | MR | Zbl

[4] Vasil'ev V.V., Piskarev S.I., Selivanova N.Yu., “Integrated semigroups and C-semigroups and their applications”, J. Math. Sci., 230 (2018), 513–646 | DOI | Zbl

[5] Petryshyn W.V., “Construction of fixed points of demicompact mappings in Hilbert space”, J. Math. Anal. Appl., 14 (1966), 276–284 | DOI | MR | Zbl

[6] Chaker W., Jeribi A., Krichen B., “Demicompact linear operators, essential spectrum and some perturbation results”, Math. Nachr., 288:13 (2015), 1476–1486 | DOI | MR | Zbl

[7] Jeribi A., Spectral theory and applications of linear operators and block operator matrices, Springer, Switzerland, 2015 | MR | Zbl

[8] Benkhaled H., Elleuch A., Jeribi A., “Demicompactness Results for Strongly Continuous Semigroups, Generators and Resolvents”, Mediterr. J. Math., 15:2 (2018) | DOI | MR | Zbl

[9] Krichen B., “Relative essential spectra involving relative demicompact unbounded linear operators”, Acta. Math. Sci., 34:2 (2014), 546–556 | DOI | MR | Zbl

[10] Li M., Huang F., “Characterizations of contraction C-semigroups”, Proc. Amer. Math. Soc., 126:4 (1998), 1063–1069 | DOI | MR | Zbl

[11] Engel K.J., Nagel R., One-parameter Semigroups for Linear Evolution Equations, Springer-Verlag, New York, 2000 | MR | Zbl