Voir la notice de l'article provenant de la source Math-Net.Ru
@article{IVM_2022_5_a6, author = {P. N. Klepikov and E. D. Rodionov and O. P. Khromova}, title = {Three-dimensional nonunimodular {Lie} groups with a {Riemannian} metric of an invariant {Ricci} soliton and a semi-symmetric metric connection}, journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika}, pages = {80--85}, publisher = {mathdoc}, number = {5}, year = {2022}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/IVM_2022_5_a6/} }
TY - JOUR AU - P. N. Klepikov AU - E. D. Rodionov AU - O. P. Khromova TI - Three-dimensional nonunimodular Lie groups with a Riemannian metric of an invariant Ricci soliton and a semi-symmetric metric connection JO - Izvestiâ vysših učebnyh zavedenij. Matematika PY - 2022 SP - 80 EP - 85 IS - 5 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/IVM_2022_5_a6/ LA - ru ID - IVM_2022_5_a6 ER -
%0 Journal Article %A P. N. Klepikov %A E. D. Rodionov %A O. P. Khromova %T Three-dimensional nonunimodular Lie groups with a Riemannian metric of an invariant Ricci soliton and a semi-symmetric metric connection %J Izvestiâ vysših učebnyh zavedenij. Matematika %D 2022 %P 80-85 %N 5 %I mathdoc %U http://geodesic.mathdoc.fr/item/IVM_2022_5_a6/ %G ru %F IVM_2022_5_a6
P. N. Klepikov; E. D. Rodionov; O. P. Khromova. Three-dimensional nonunimodular Lie groups with a Riemannian metric of an invariant Ricci soliton and a semi-symmetric metric connection. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 5 (2022), pp. 80-85. http://geodesic.mathdoc.fr/item/IVM_2022_5_a6/
[1] Cartan E., “Sur les variétés à connexion affine et la théorie de la relativité généralisée $($deuxième partie$)$”, Ann. Ec. Norm., 42 (1925), 17–88 | MR | Zbl
[2] Yano K., “On semi-symmetric metric connection”, Rev. Roum. Math. Pure Appl., 15 (1970), 1579–1586 | MR | Zbl
[3] Agricola I., Kraus M., “Manifolds with vectorial torsion”, Diff. Geometry and its Appl., 46 (2016), 130–147 | DOI | MR
[4] Agricola I., Thier C., “The geodesics of metric connections with vectorial torsion”, Ann. Global Anal. Geom., 26 (2004), 321–332 | DOI | MR | Zbl
[5] Barua B., Ray A.Kr., “Some properties of a semi-symmetric metric connection in a Riemannian manifold”, Indian J. Pure Appl. Math., 16:7 (1985), 736–740 | MR | Zbl
[6] De U.C., De B.K., “Some properties of a semi-symmetric metric connection on a Riemannian manifold”, Istanbul Univ. Fen. Fak. Mat. Der., 54 (1995), 111–117 | MR
[7] Cerbo L. F., “Generic properties of homogeneous Ricci solitons”, Adv. Geom., 14:2 (2014), 225–237 | DOI | MR | Zbl
[8] Klepikov P. N., Oskorbin D. N., “Odnorodnye invariantnye solitony Richchi na chetyrekhmernykh gruppakh Li”, Izv. AltGU, 85:1 (2015), 115–122
[9] Klepikov P. N., Rodionov E. D., Khromova O. P., “Ob invariantnykh solitonakh Richchi na trekhmernykh metricheskikh gruppakh Li s polusimmetricheskoi svyaznostyu”, Izv. vuzov. Matem., 2021, no. 8, 80–85 | Zbl
[10] Milnor J., “Curvature of left invariant metric on Lie groups”, Adv. in Math., 21 (1976), 293–329 | DOI | MR | Zbl