Three-dimensional nonunimodular Lie groups with a Riemannian metric of an invariant Ricci soliton and a semi-symmetric metric connection
Izvestiâ vysših učebnyh zavedenij. Matematika, no. 5 (2022), pp. 80-85.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper, we consider invariant Ricci solitons on three-dimensional nonunimodular Lie groups with a left-invariant Riemannian metric and a semi-symmetric connection. It is shown that there are nontrivial solutions of the Ricci soliton equation on such Lie groups, and their complete classification is obtained.
Mots-clés : invariant Ricci soliton, Lie group
Keywords: left-invariant Riemannian metric, semi-symmetric metric connection.
@article{IVM_2022_5_a6,
     author = {P. N. Klepikov and E. D. Rodionov and O. P. Khromova},
     title = {Three-dimensional nonunimodular {Lie} groups with a {Riemannian} metric of an invariant {Ricci} soliton and a semi-symmetric metric connection},
     journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika},
     pages = {80--85},
     publisher = {mathdoc},
     number = {5},
     year = {2022},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/IVM_2022_5_a6/}
}
TY  - JOUR
AU  - P. N. Klepikov
AU  - E. D. Rodionov
AU  - O. P. Khromova
TI  - Three-dimensional nonunimodular Lie groups with a Riemannian metric of an invariant Ricci soliton and a semi-symmetric metric connection
JO  - Izvestiâ vysših učebnyh zavedenij. Matematika
PY  - 2022
SP  - 80
EP  - 85
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IVM_2022_5_a6/
LA  - ru
ID  - IVM_2022_5_a6
ER  - 
%0 Journal Article
%A P. N. Klepikov
%A E. D. Rodionov
%A O. P. Khromova
%T Three-dimensional nonunimodular Lie groups with a Riemannian metric of an invariant Ricci soliton and a semi-symmetric metric connection
%J Izvestiâ vysših učebnyh zavedenij. Matematika
%D 2022
%P 80-85
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IVM_2022_5_a6/
%G ru
%F IVM_2022_5_a6
P. N. Klepikov; E. D. Rodionov; O. P. Khromova. Three-dimensional nonunimodular Lie groups with a Riemannian metric of an invariant Ricci soliton and a semi-symmetric metric connection. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 5 (2022), pp. 80-85. http://geodesic.mathdoc.fr/item/IVM_2022_5_a6/

[1] Cartan E., “Sur les variétés à connexion affine et la théorie de la relativité généralisée $($deuxième partie$)$”, Ann. Ec. Norm., 42 (1925), 17–88 | MR | Zbl

[2] Yano K., “On semi-symmetric metric connection”, Rev. Roum. Math. Pure Appl., 15 (1970), 1579–1586 | MR | Zbl

[3] Agricola I., Kraus M., “Manifolds with vectorial torsion”, Diff. Geometry and its Appl., 46 (2016), 130–147 | DOI | MR

[4] Agricola I., Thier C., “The geodesics of metric connections with vectorial torsion”, Ann. Global Anal. Geom., 26 (2004), 321–332 | DOI | MR | Zbl

[5] Barua B., Ray A.Kr., “Some properties of a semi-symmetric metric connection in a Riemannian manifold”, Indian J. Pure Appl. Math., 16:7 (1985), 736–740 | MR | Zbl

[6] De U.C., De B.K., “Some properties of a semi-symmetric metric connection on a Riemannian manifold”, Istanbul Univ. Fen. Fak. Mat. Der., 54 (1995), 111–117 | MR

[7] Cerbo L. F., “Generic properties of homogeneous Ricci solitons”, Adv. Geom., 14:2 (2014), 225–237 | DOI | MR | Zbl

[8] Klepikov P. N., Oskorbin D. N., “Odnorodnye invariantnye solitony Richchi na chetyrekhmernykh gruppakh Li”, Izv. AltGU, 85:1 (2015), 115–122

[9] Klepikov P. N., Rodionov E. D., Khromova O. P., “Ob invariantnykh solitonakh Richchi na trekhmernykh metricheskikh gruppakh Li s polusimmetricheskoi svyaznostyu”, Izv. vuzov. Matem., 2021, no. 8, 80–85 | Zbl

[10] Milnor J., “Curvature of left invariant metric on Lie groups”, Adv. in Math., 21 (1976), 293–329 | DOI | MR | Zbl