Iterative method for solving a non-linear edge problems with a point source
Izvestiâ vysših učebnyh zavedenij. Matematika, no. 5 (2022), pp. 74-79.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper, we consider the first boundary value problem for a quasilinear equation in a bounded domain with a point source. The solution of the problem is sought in the form of the sum of three functions. The first function is represented explicitly and is the solution of a linear equation with a point source with constant coefficients. The second function is found from the solution of a linear homogeneous boundary value problem with constant coefficients. To search for the third function an iterative process is used that converges strongly in the Sobolev space at the rate of a geometric progression.
Mots-clés : point source
Keywords: non-linear boundary value problem, iterative process.
@article{IVM_2022_5_a5,
     author = {O. A. Zadvornov and G. O. Trifonova},
     title = {Iterative method for solving a non-linear edge problems with a point source},
     journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika},
     pages = {74--79},
     publisher = {mathdoc},
     number = {5},
     year = {2022},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/IVM_2022_5_a5/}
}
TY  - JOUR
AU  - O. A. Zadvornov
AU  - G. O. Trifonova
TI  - Iterative method for solving a non-linear edge problems with a point source
JO  - Izvestiâ vysših učebnyh zavedenij. Matematika
PY  - 2022
SP  - 74
EP  - 79
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IVM_2022_5_a5/
LA  - ru
ID  - IVM_2022_5_a5
ER  - 
%0 Journal Article
%A O. A. Zadvornov
%A G. O. Trifonova
%T Iterative method for solving a non-linear edge problems with a point source
%J Izvestiâ vysših učebnyh zavedenij. Matematika
%D 2022
%P 74-79
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IVM_2022_5_a5/
%G ru
%F IVM_2022_5_a5
O. A. Zadvornov; G. O. Trifonova. Iterative method for solving a non-linear edge problems with a point source. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 5 (2022), pp. 74-79. http://geodesic.mathdoc.fr/item/IVM_2022_5_a5/

[1] Zadvornov O. A., “Suschestvovanie resheniya kvazilineinoi ellipticheskoi kraevoi zadachi pri nalichii tochechnykh istochnikov”, Uchen. zap. Kazansk. un-ta. Ser. Fiz.-matem. nauki, 152, no. 1, 2010, 155–163 | MR | Zbl

[2] Gaevskii Kh., Greger K., Zakharias K., Nelineinye operatornye uravneniya i operatornye differentsialnye uravneniya, Mir, M., 1978

[3] Zadvornov O. A., Zadvornova G. O., “O reshenii nelineinoi statsionarnoi neodnorodnoi zadachi filtratsii pri nalichii tochechnogo istochnika”, Differents. uravneniya, 50:7 (2014), 984–988 | MR | Zbl

[4] Badriev I. B., Banderov V. V., Zadvornov O. A., “Suschestvovanie resheniya zadachi o ravnovesii myagkoi setchatoi obolochki pri nalichii tochechnoi nagruzki”, Uchen. zap. Kazansk. un-ta. Ser. Fiz.-matem. nauki, 152, no. 1, 2010, 93–102 | MR | Zbl

[5] Zadvornov O. A., “Issledovanie nelineinoi statsionarnoi zadachi filtratsii pri nalichii tochechnogo istochnika”, Izv. vuzov. Matem., 2005, no. 1, 25–30 | Zbl