Massera problem for some nonautonomous functional differential equations of neutral type with finite delay
Izvestiâ vysših učebnyh zavedenij. Matematika, no. 5 (2022), pp. 61-73.

Voir la notice de l'article provenant de la source Math-Net.Ru

The paper considers the existence of periodic solutions for some nonautonomous nonlinear partial functional differential equations of neutral type with finite delay. We suppose that the linear part is non-densely defined and satisfies the Acquistapace-Terreni conditions. The delayed part is assumed to be $\omega$-periodic with respect to the first argument. The existence of periodic solutions will be studied in the linear case by using the existence of bounded solutions. In the nonlinear case, a fixed point theorem for multivalued mapping and some sufficient conditions are given to prove the existence of periodic solutions. An example is given to illustrate the theoretical results.
Keywords: Evolution family, mild solution, periodic solutions, fixed point theorem, multivalued map, Poincaré map
Mots-clés : neutral equation.
@article{IVM_2022_5_a4,
     author = {M. Es-saiydy and I. Oumadane and M. Zitane},
     title = {Massera problem for some nonautonomous functional differential equations of neutral type with finite delay},
     journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika},
     pages = {61--73},
     publisher = {mathdoc},
     number = {5},
     year = {2022},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/IVM_2022_5_a4/}
}
TY  - JOUR
AU  - M. Es-saiydy
AU  - I. Oumadane
AU  - M. Zitane
TI  - Massera problem for some nonautonomous functional differential equations of neutral type with finite delay
JO  - Izvestiâ vysših učebnyh zavedenij. Matematika
PY  - 2022
SP  - 61
EP  - 73
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IVM_2022_5_a4/
LA  - ru
ID  - IVM_2022_5_a4
ER  - 
%0 Journal Article
%A M. Es-saiydy
%A I. Oumadane
%A M. Zitane
%T Massera problem for some nonautonomous functional differential equations of neutral type with finite delay
%J Izvestiâ vysših učebnyh zavedenij. Matematika
%D 2022
%P 61-73
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IVM_2022_5_a4/
%G ru
%F IVM_2022_5_a4
M. Es-saiydy; I. Oumadane; M. Zitane. Massera problem for some nonautonomous functional differential equations of neutral type with finite delay. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 5 (2022), pp. 61-73. http://geodesic.mathdoc.fr/item/IVM_2022_5_a4/

[1] Zitane M., Bensouda C., “Massera problem for non-autonomous retarded differential equations”, J. Math. Anal. and Appl., 402 (2013), 453–462 | DOI | MR | Zbl

[2] Zitane M., “Periodic solutions for non-autonomous neutral functional differential equations with finite delay”, Acta Math. Vietnam, 42 (2017), 533–550 | DOI | MR | Zbl

[3] Massera J. L., “The existence of periodic solutions of systems of differential equations”, Duke Math. J., 17 (1950), 457–475 | DOI | MR | Zbl

[4] Burton T., Stability and Periodic Solutions of Ordinary Differential Equations and Functional Differential Equations, Academic Press, New York, 1985 | Zbl

[5] Chow S. N., “Remarks on one-dimensional delay-differential equations”, J. Math. Anal. Appl., 41 (1973), 426–429 | DOI | MR | Zbl

[6] Haddock J., “Liapunov functions and boundedness and global existence of solutions. Periodic solutions of non-densely defined delay evolutions equations”, Appl. Anal., 1 (1972), 321–330 | MR

[7] Hale J. K., Asymptotic Behavior of Dissipative Systems, Mathematical Surveys and Monorgaphs, 25, American Math. Soc., Rhode Island, 1988 | MR | Zbl

[8] Liu J. H., “Bounded and periodic solutions of semi-linear evolution equations”, Dynam. Syst. Appl., 4 (1995), 341–350 | MR | Zbl

[9] Yoshizawa T., Stability Theory by Lyapunov's Second Method, Publications of the Math. Soc. of Japan, Tokyo, 1966 | MR

[10] Burton T., Zhang B., “Periodic solutions of abstract differential equations with infinite delay”, J. Diff. Equat., 90 (1991), 357–396 | DOI | MR | Zbl

[11] Gühring G., Räbiger F., “Asymptotic properties of non autonomous evolutions equations with applications to retarded differential equations”, Abstract and Appl. Anal., 4:3 (1999), 169–194 | DOI | MR | Zbl

[12] Hino Y., Murakami S., “Periodic solutions of linear Volterra systems in differential equations”, Lect. Notes in Pure and App. Math., 118, Dekker, New York, 1987, 319–326 | MR

[13] HinoY., Naito T., Minh N. V., Shin J. S., “Almost periodic solutions of differential equations in Banach spaces”, Stability and Control: Theory, Methods and Appl., 2002 | MR

[14] Naito T., Shin J. S., “Semi-Fredholm operators and periodic solutions for linear differential equations”, J. Diff. Equat., 153 (1999), 407–441 | DOI | MR | Zbl

[15] Zeidler E., Nonlinear Functional Analysis and its Applications, v. I, Fixed Point Theorems, Springer, New York, 1993 | MR | Zbl

[16] Es-saiydy M., Zitane M., “Weighted Stepanov-like pseudo almost periodicity on time scales and applications”, Diff. Equat. Dynam. Syst., 2020 | DOI

[17] Li Y., Cong F., Li Z., Liu W., “Periodic solutions for evolutions equations”, Nonlinear Anal., 36 (1999), 275–293 | DOI | MR | Zbl

[18] Liu J. H., “Bounded and periodic solutions of differential equations in Banach space”, J. Appl. Math. Comput., 65 (1994), 141–150 | DOI | MR | Zbl

[19] Liu J. H., “Bounded and periodic solutions of finite delay evolutions equations”, Nonlinear Anal., 34 (1998), 101–111 | DOI | MR | Zbl

[20] Wu J., Xia H., “Self-sustained oscillations in a ring array of coupled lossless transmission lines”, J. Diff. Equat., 124:1 (1996), 247–278 | DOI | MR | Zbl

[21] Amann H., Linear and Quasilinear Parabolic Problems, Birkhäuser, Berlin, 1995 | MR | Zbl

[22] Pazy A., Semigroups of linear operators and applications to partial differential equations, v. 44, Appl. Math. Sci., Springer-Verlag, New York, 1983 | DOI | MR | Zbl

[23] Acquistapace P., Flandoli F., Terreni B., “Initial boundary value problems and optimal control for nonautonomous parabolic systems”, SIAM J. Control Optim., 29 (1991), 89–118 | DOI | MR | Zbl

[24] Acquistapace P., Terreni B., “A unified approach to abstract linear parabolic equations”, Rend. Sem. Mat. Univ. Padova, 78 (1987), 47–107 | MR | Zbl

[25] Acquistapace P., “Evolution operators and strong solutions of abstract linear parabolic equations”, Diff. Integral Equat., 1 (1988), 433–457 | MR | Zbl

[26] Yagi A., “Parabolic equations in which the coefficients are generators of infinitely differentiable semigroups II”, Funkcial. Ekvac., 33 (1990), 139–150 | MR | Zbl

[27] Yagi A., “Abstract quasilinear evolution equations of parabolic type in Banach spaces”, Unione Mat. Ital. Sez B, 7:5 (1991), 341–368 | MR

[28] Negel K. J., One-Parameter Semigroups for Linear Evolution Equations, Graduate Texts in Mathematics, 194, Springer-Verlag, 2000 | MR

[29] Coppel W. A., Dichotomies in Stability Theory, Springer-Verlag, 1978 | MR | Zbl

[30] Fink A. M., Almost Periodic Differential Equations, Lecture Notes in Mathematics, Springer-Verlag, New York–Berlin, 1974 | DOI | MR | Zbl

[31] Henry D., Geometry Theory of Semilinear Parabolic Equations, Springer-Verlag, 1981 | MR

[32] Da Prato G., Sinestrari E., “Differential operators with non dense domain”, Ann. Scuola Norm. Sup. Pisa Cl. Sci., 14:2 (1987), 285–344 | MR | Zbl

[33] Arendt W., Grabosch A., Greiner G., Groh U., Lotz H. P., Moustakas U., Nagel R., Neubrander B., Schlotterbeck U., One-Parameter Semigroup of Positive Operators, Lect. Notes in Math., 1184, Springer-Verlag, Berlin, 1984 | MR