Massera problem for some nonautonomous functional differential equations of neutral type with finite delay
Izvestiâ vysših učebnyh zavedenij. Matematika, no. 5 (2022), pp. 61-73 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The paper considers the existence of periodic solutions for some nonautonomous nonlinear partial functional differential equations of neutral type with finite delay. We suppose that the linear part is non-densely defined and satisfies the Acquistapace-Terreni conditions. The delayed part is assumed to be $\omega$-periodic with respect to the first argument. The existence of periodic solutions will be studied in the linear case by using the existence of bounded solutions. In the nonlinear case, a fixed point theorem for multivalued mapping and some sufficient conditions are given to prove the existence of periodic solutions. An example is given to illustrate the theoretical results.
Keywords: Evolution family, mild solution, periodic solutions, fixed point theorem, multivalued map
Mots-clés : Poincaré map, neutral equation.
@article{IVM_2022_5_a4,
     author = {M. Es-saiydy and I. Oumadane and M. Zitane},
     title = {Massera problem for some nonautonomous functional differential equations of neutral type with finite delay},
     journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika},
     pages = {61--73},
     year = {2022},
     number = {5},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/IVM_2022_5_a4/}
}
TY  - JOUR
AU  - M. Es-saiydy
AU  - I. Oumadane
AU  - M. Zitane
TI  - Massera problem for some nonautonomous functional differential equations of neutral type with finite delay
JO  - Izvestiâ vysših učebnyh zavedenij. Matematika
PY  - 2022
SP  - 61
EP  - 73
IS  - 5
UR  - http://geodesic.mathdoc.fr/item/IVM_2022_5_a4/
LA  - ru
ID  - IVM_2022_5_a4
ER  - 
%0 Journal Article
%A M. Es-saiydy
%A I. Oumadane
%A M. Zitane
%T Massera problem for some nonautonomous functional differential equations of neutral type with finite delay
%J Izvestiâ vysših učebnyh zavedenij. Matematika
%D 2022
%P 61-73
%N 5
%U http://geodesic.mathdoc.fr/item/IVM_2022_5_a4/
%G ru
%F IVM_2022_5_a4
M. Es-saiydy; I. Oumadane; M. Zitane. Massera problem for some nonautonomous functional differential equations of neutral type with finite delay. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 5 (2022), pp. 61-73. http://geodesic.mathdoc.fr/item/IVM_2022_5_a4/

[1] Zitane M., Bensouda C., “Massera problem for non-autonomous retarded differential equations”, J. Math. Anal. and Appl., 402 (2013), 453–462 | DOI | MR | Zbl

[2] Zitane M., “Periodic solutions for non-autonomous neutral functional differential equations with finite delay”, Acta Math. Vietnam, 42 (2017), 533–550 | DOI | MR | Zbl

[3] Massera J. L., “The existence of periodic solutions of systems of differential equations”, Duke Math. J., 17 (1950), 457–475 | DOI | MR | Zbl

[4] Burton T., Stability and Periodic Solutions of Ordinary Differential Equations and Functional Differential Equations, Academic Press, New York, 1985 | Zbl

[5] Chow S. N., “Remarks on one-dimensional delay-differential equations”, J. Math. Anal. Appl., 41 (1973), 426–429 | DOI | MR | Zbl

[6] Haddock J., “Liapunov functions and boundedness and global existence of solutions. Periodic solutions of non-densely defined delay evolutions equations”, Appl. Anal., 1 (1972), 321–330 | MR

[7] Hale J. K., Asymptotic Behavior of Dissipative Systems, Mathematical Surveys and Monorgaphs, 25, American Math. Soc., Rhode Island, 1988 | MR | Zbl

[8] Liu J. H., “Bounded and periodic solutions of semi-linear evolution equations”, Dynam. Syst. Appl., 4 (1995), 341–350 | MR | Zbl

[9] Yoshizawa T., Stability Theory by Lyapunov's Second Method, Publications of the Math. Soc. of Japan, Tokyo, 1966 | MR

[10] Burton T., Zhang B., “Periodic solutions of abstract differential equations with infinite delay”, J. Diff. Equat., 90 (1991), 357–396 | DOI | MR | Zbl

[11] Gühring G., Räbiger F., “Asymptotic properties of non autonomous evolutions equations with applications to retarded differential equations”, Abstract and Appl. Anal., 4:3 (1999), 169–194 | DOI | MR | Zbl

[12] Hino Y., Murakami S., “Periodic solutions of linear Volterra systems in differential equations”, Lect. Notes in Pure and App. Math., 118, Dekker, New York, 1987, 319–326 | MR

[13] HinoY., Naito T., Minh N. V., Shin J. S., “Almost periodic solutions of differential equations in Banach spaces”, Stability and Control: Theory, Methods and Appl., 2002 | MR

[14] Naito T., Shin J. S., “Semi-Fredholm operators and periodic solutions for linear differential equations”, J. Diff. Equat., 153 (1999), 407–441 | DOI | MR | Zbl

[15] Zeidler E., Nonlinear Functional Analysis and its Applications, v. I, Fixed Point Theorems, Springer, New York, 1993 | MR | Zbl

[16] Es-saiydy M., Zitane M., “Weighted Stepanov-like pseudo almost periodicity on time scales and applications”, Diff. Equat. Dynam. Syst., 2020 | DOI

[17] Li Y., Cong F., Li Z., Liu W., “Periodic solutions for evolutions equations”, Nonlinear Anal., 36 (1999), 275–293 | DOI | MR | Zbl

[18] Liu J. H., “Bounded and periodic solutions of differential equations in Banach space”, J. Appl. Math. Comput., 65 (1994), 141–150 | DOI | MR | Zbl

[19] Liu J. H., “Bounded and periodic solutions of finite delay evolutions equations”, Nonlinear Anal., 34 (1998), 101–111 | DOI | MR | Zbl

[20] Wu J., Xia H., “Self-sustained oscillations in a ring array of coupled lossless transmission lines”, J. Diff. Equat., 124:1 (1996), 247–278 | DOI | MR | Zbl

[21] Amann H., Linear and Quasilinear Parabolic Problems, Birkhäuser, Berlin, 1995 | MR | Zbl

[22] Pazy A., Semigroups of linear operators and applications to partial differential equations, v. 44, Appl. Math. Sci., Springer-Verlag, New York, 1983 | DOI | MR | Zbl

[23] Acquistapace P., Flandoli F., Terreni B., “Initial boundary value problems and optimal control for nonautonomous parabolic systems”, SIAM J. Control Optim., 29 (1991), 89–118 | DOI | MR | Zbl

[24] Acquistapace P., Terreni B., “A unified approach to abstract linear parabolic equations”, Rend. Sem. Mat. Univ. Padova, 78 (1987), 47–107 | MR | Zbl

[25] Acquistapace P., “Evolution operators and strong solutions of abstract linear parabolic equations”, Diff. Integral Equat., 1 (1988), 433–457 | MR | Zbl

[26] Yagi A., “Parabolic equations in which the coefficients are generators of infinitely differentiable semigroups II”, Funkcial. Ekvac., 33 (1990), 139–150 | MR | Zbl

[27] Yagi A., “Abstract quasilinear evolution equations of parabolic type in Banach spaces”, Unione Mat. Ital. Sez B, 7:5 (1991), 341–368 | MR

[28] Negel K. J., One-Parameter Semigroups for Linear Evolution Equations, Graduate Texts in Mathematics, 194, Springer-Verlag, 2000 | MR

[29] Coppel W. A., Dichotomies in Stability Theory, Springer-Verlag, 1978 | MR | Zbl

[30] Fink A. M., Almost Periodic Differential Equations, Lecture Notes in Mathematics, Springer-Verlag, New York–Berlin, 1974 | DOI | MR | Zbl

[31] Henry D., Geometry Theory of Semilinear Parabolic Equations, Springer-Verlag, 1981 | MR

[32] Da Prato G., Sinestrari E., “Differential operators with non dense domain”, Ann. Scuola Norm. Sup. Pisa Cl. Sci., 14:2 (1987), 285–344 | MR | Zbl

[33] Arendt W., Grabosch A., Greiner G., Groh U., Lotz H. P., Moustakas U., Nagel R., Neubrander B., Schlotterbeck U., One-Parameter Semigroup of Positive Operators, Lect. Notes in Math., 1184, Springer-Verlag, Berlin, 1984 | MR