Theories in propositional logiс and the converse of substitution
Izvestiâ vysših učebnyh zavedenij. Matematika, no. 5 (2022), pp. 33-41.

Voir la notice de l'article provenant de la source Math-Net.Ru

The paper considers the question of the existence and number of substitutional logics. It is proved that every tabular logic with a functionally complete system of connectives is substitutional. For these logics, the existence of an algorithm is proved, which, for a recursive consistent axiomatic of the theory, constructs an exact unifying substitution for it. A countable set of substitutional tabular logics is constructed. Some substitutional tabular logics with meaningful interpretation are presented. In addition, it is proved that every substitutional logic has a characteristic matrix. It is proved that there are continuum of nonsubstitutional logics.
Keywords: substitutional tabular logic, superintuitionistic logic, Lukasiewicz's logic.
@article{IVM_2022_5_a2,
     author = {I. A. Gorbunov},
     title = {Theories in propositional logi{\cyrs} and the converse of substitution},
     journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika},
     pages = {33--41},
     publisher = {mathdoc},
     number = {5},
     year = {2022},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/IVM_2022_5_a2/}
}
TY  - JOUR
AU  - I. A. Gorbunov
TI  - Theories in propositional logiс and the converse of substitution
JO  - Izvestiâ vysših učebnyh zavedenij. Matematika
PY  - 2022
SP  - 33
EP  - 41
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IVM_2022_5_a2/
LA  - ru
ID  - IVM_2022_5_a2
ER  - 
%0 Journal Article
%A I. A. Gorbunov
%T Theories in propositional logiс and the converse of substitution
%J Izvestiâ vysših učebnyh zavedenij. Matematika
%D 2022
%P 33-41
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IVM_2022_5_a2/
%G ru
%F IVM_2022_5_a2
I. A. Gorbunov. Theories in propositional logiс and the converse of substitution. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 5 (2022), pp. 33-41. http://geodesic.mathdoc.fr/item/IVM_2022_5_a2/

[1] Los J., Suszko R., “Remarks on sentential logics”, Indagationes Math., 20 (1958), 177–183 | DOI | MR

[2] Wójcicki R., Lectures on Propositional Calculi, Ossolineum, Wroclaw, 1984 | MR | Zbl

[3] Gorbunov I. A., “Obraschenie podstanovki i teorii klassicheskoi propozitsionalnoi logiki”, Algebra i matematicheskaya logika: teoriya i prilozheniya, materialy mezhdunarodnoi konferentsii (Kazan), KFU, Kazan, 2019, 98–100

[4] Yablonskii S. V., Vvedenie v diskretnuyu matematiku, Vyssh. shk., M., 2003

[5] Yablonskii S. V., “Funktsionalnye postroeniya v $k$-znachnoi logike”, Tr. MIAN SSSR, 51, 1958, 5–142 | Zbl

[6] Karpenko A. S., Logiki Lukasevicha i prostye chisla, Nauka, M., 2000 | MR

[7] Chagrov A., Zakharyaschev M., Modal Logic, Clarendon Press, Oxford, 1997 | MR | Zbl

[8] Dragalin A. G., Matematicheskii intuitsionizm. Vvedenie v teoriyu dokazatelstv. Matematicheskaya logika i osnovaniya matematiki, Nauka, M., 1979 | MR