Voir la notice de l'article provenant de la source Math-Net.Ru
@article{IVM_2022_5_a1, author = {S. L. Berberyan}, title = {Meyer points and refined {Meyer} points for arbitrary harmonic functions}, journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika}, pages = {26--32}, publisher = {mathdoc}, number = {5}, year = {2022}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/IVM_2022_5_a1/} }
S. L. Berberyan. Meyer points and refined Meyer points for arbitrary harmonic functions. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 5 (2022), pp. 26-32. http://geodesic.mathdoc.fr/item/IVM_2022_5_a1/
[1] Privalov I. I., Granichnye svoistva analiticheskikh funktsii, GITTL, M.-L., 1950 | MR
[2] Nosiro K., Predelnye mnozhestva, In. lit., M., 1963
[3] Solomentsev E. D., “Garmonicheskie i subgarmonicheskie funktsii i ikh obobscheniya.”, Itogi nauki. Ser. matem. analiz. Teor. veroyatn. Regulir., VINITI AN SSSR, M., 1964, 83–100
[4] Kollingvud E., Lovater A., Teoriya predelnykh mnozhestv, Mir, M., 1971
[5] Gavrilov V. I., Zakharyan V. S., “Mnozhestvo tochek Lindelefa proizvolnykh kompleksnykh funktsii”, DAN Arm. SSR, 86:1 (1988), 12–16 | MR | Zbl
[6] Gavrilov V. I., Zakharyan V. S., Subbotin A. V., “Lineino-topologicheskie svoistva maksimalnykh prostranstv Khardi garmonicheskikh funktsii v kruge”, DNAN Armenii, 102:3 (2002), 203–209 | MR
[7] Berberyan S. L., “O nekotorykh granichnykh tochkakh proizvolnykh garmonicheskikh funktsii”, Izv. vuzov. Matem., 2014, no. 5, 3–11 | Zbl
[8] Berberyan S. L., Gavrilov V. I., “Predelnye mnozhestva nepreryvnykh i garmonicheskikh funktsii po nekasatelnym granichnym putyam”, Math. Montisnigri, 1993, no. 1, 17–25 | MR
[9] Yamashita Sh., “On Fatou- and Plessner-type theorems”, Proc. Japan Acad., 46:6 (1970), 494–495 | MR | Zbl
[10] Berberyan S. L., “O raspredelenii znachenii garmonicheskikh funktsii v edinichnom kruge”, Izv. vuzov. Matem., 2011, no. 6, 12–19 | Zbl