Meyer points and refined Meyer points for arbitrary harmonic functions
Izvestiâ vysših učebnyh zavedenij. Matematika, no. 5 (2022), pp. 26-32.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper we study the Meyer points and the refined Meyer points for arbitrary harmonic functions defined in the unit circle. We also consider the representation of points of the set $M(f)$.
Keywords: harmonic functions, Meyer points, refined Meyer points, $P^\prime$-sequence, normal chord.
@article{IVM_2022_5_a1,
     author = {S. L. Berberyan},
     title = {Meyer points and refined {Meyer} points for arbitrary harmonic functions},
     journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika},
     pages = {26--32},
     publisher = {mathdoc},
     number = {5},
     year = {2022},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/IVM_2022_5_a1/}
}
TY  - JOUR
AU  - S. L. Berberyan
TI  - Meyer points and refined Meyer points for arbitrary harmonic functions
JO  - Izvestiâ vysših učebnyh zavedenij. Matematika
PY  - 2022
SP  - 26
EP  - 32
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IVM_2022_5_a1/
LA  - ru
ID  - IVM_2022_5_a1
ER  - 
%0 Journal Article
%A S. L. Berberyan
%T Meyer points and refined Meyer points for arbitrary harmonic functions
%J Izvestiâ vysših učebnyh zavedenij. Matematika
%D 2022
%P 26-32
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IVM_2022_5_a1/
%G ru
%F IVM_2022_5_a1
S. L. Berberyan. Meyer points and refined Meyer points for arbitrary harmonic functions. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 5 (2022), pp. 26-32. http://geodesic.mathdoc.fr/item/IVM_2022_5_a1/

[1] Privalov I. I., Granichnye svoistva analiticheskikh funktsii, GITTL, M.-L., 1950 | MR

[2] Nosiro K., Predelnye mnozhestva, In. lit., M., 1963

[3] Solomentsev E. D., “Garmonicheskie i subgarmonicheskie funktsii i ikh obobscheniya.”, Itogi nauki. Ser. matem. analiz. Teor. veroyatn. Regulir., VINITI AN SSSR, M., 1964, 83–100

[4] Kollingvud E., Lovater A., Teoriya predelnykh mnozhestv, Mir, M., 1971

[5] Gavrilov V. I., Zakharyan V. S., “Mnozhestvo tochek Lindelefa proizvolnykh kompleksnykh funktsii”, DAN Arm. SSR, 86:1 (1988), 12–16 | MR | Zbl

[6] Gavrilov V. I., Zakharyan V. S., Subbotin A. V., “Lineino-topologicheskie svoistva maksimalnykh prostranstv Khardi garmonicheskikh funktsii v kruge”, DNAN Armenii, 102:3 (2002), 203–209 | MR

[7] Berberyan S. L., “O nekotorykh granichnykh tochkakh proizvolnykh garmonicheskikh funktsii”, Izv. vuzov. Matem., 2014, no. 5, 3–11 | Zbl

[8] Berberyan S. L., Gavrilov V. I., “Predelnye mnozhestva nepreryvnykh i garmonicheskikh funktsii po nekasatelnym granichnym putyam”, Math. Montisnigri, 1993, no. 1, 17–25 | MR

[9] Yamashita Sh., “On Fatou- and Plessner-type theorems”, Proc. Japan Acad., 46:6 (1970), 494–495 | MR | Zbl

[10] Berberyan S. L., “O raspredelenii znachenii garmonicheskikh funktsii v edinichnom kruge”, Izv. vuzov. Matem., 2011, no. 6, 12–19 | Zbl