On the boundedness problem of maximal operators
Izvestiâ vysših učebnyh zavedenij. Matematika, no. 4 (2022), pp. 84-94

Voir la notice de l'article provenant de la source Math-Net.Ru

It is considered maximal operators associated with singular surfaces in the space $\mathbb{R}^{3}.$ It is proved theorem on the boundedness of these operators in $L^{p}$, when a singular surface is given by parametric equations.
Keywords: maximal operator, averaging operator, fractional power series, indicator of boundedness, singular surface.
@article{IVM_2022_4_a6,
     author = {S. E. Usmanov},
     title = {On the boundedness problem of maximal operators},
     journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika},
     pages = {84--94},
     publisher = {mathdoc},
     number = {4},
     year = {2022},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/IVM_2022_4_a6/}
}
TY  - JOUR
AU  - S. E. Usmanov
TI  - On the boundedness problem of maximal operators
JO  - Izvestiâ vysših učebnyh zavedenij. Matematika
PY  - 2022
SP  - 84
EP  - 94
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IVM_2022_4_a6/
LA  - ru
ID  - IVM_2022_4_a6
ER  - 
%0 Journal Article
%A S. E. Usmanov
%T On the boundedness problem of maximal operators
%J Izvestiâ vysših učebnyh zavedenij. Matematika
%D 2022
%P 84-94
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IVM_2022_4_a6/
%G ru
%F IVM_2022_4_a6
S. E. Usmanov. On the boundedness problem of maximal operators. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 4 (2022), pp. 84-94. http://geodesic.mathdoc.fr/item/IVM_2022_4_a6/