On the existence of solutions to boundary value problems for nonlinear equilibrium equations of shallow anisotropic shells of Timoshenko type in Sobolev space
Izvestiâ vysših učebnyh zavedenij. Matematika, no. 4 (2022), pp. 67-83.

Voir la notice de l'article provenant de la source Math-Net.Ru

The existence of solutions to the boundary value problem for a system of five nonlinear partial differential equations of the second order under given nonlinear boundary conditions is proved, which describes the equilibrium state of elastic shallow inhomogeneous anisotropic shells with unfixed edges in the framework of the Timoshenko shear model. The boundary value problem is reduced to a nonlinear operator equation in Sobolev space, the decidability of which is established using the principle of contracted mappings.
Keywords: shallow anisotropic inhomogeneous shell of Timoshenko type, equilibrium equation, static boundary condition, generalized displacement, generalized solution, integral representation, holomorphic function, integral equation, operator, existence theorem.
@article{IVM_2022_4_a5,
     author = {S. N. Timergaliev},
     title = {On the existence of solutions to boundary value problems for nonlinear equilibrium equations of shallow anisotropic shells of {Timoshenko} type in {Sobolev} space},
     journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika},
     pages = {67--83},
     publisher = {mathdoc},
     number = {4},
     year = {2022},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/IVM_2022_4_a5/}
}
TY  - JOUR
AU  - S. N. Timergaliev
TI  - On the existence of solutions to boundary value problems for nonlinear equilibrium equations of shallow anisotropic shells of Timoshenko type in Sobolev space
JO  - Izvestiâ vysših učebnyh zavedenij. Matematika
PY  - 2022
SP  - 67
EP  - 83
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IVM_2022_4_a5/
LA  - ru
ID  - IVM_2022_4_a5
ER  - 
%0 Journal Article
%A S. N. Timergaliev
%T On the existence of solutions to boundary value problems for nonlinear equilibrium equations of shallow anisotropic shells of Timoshenko type in Sobolev space
%J Izvestiâ vysših učebnyh zavedenij. Matematika
%D 2022
%P 67-83
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IVM_2022_4_a5/
%G ru
%F IVM_2022_4_a5
S. N. Timergaliev. On the existence of solutions to boundary value problems for nonlinear equilibrium equations of shallow anisotropic shells of Timoshenko type in Sobolev space. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 4 (2022), pp. 67-83. http://geodesic.mathdoc.fr/item/IVM_2022_4_a5/

[1] Vorovich I. I., Matematicheskie problemy nelineinoi teorii pologikh obolochek, Nauka, M., 1989 | MR

[2] Morozov N. F., Izbrannye dvumernye zadachi teorii uprugosti, Izd-vo LGU, L., 1978

[3] Karchevskii M. M., “Issledovanie razreshimosti nelineinoi zadachi o ravnovesii pologoi nezakreplennoi obolochki”, Uchen. zap. Kazansk. un-ta. Ser. fiz.-matem. nauk, 155, no. 3, 2013, 105–110

[4] Badriev I. B., Makarov M. D., Paimushin V. N., “Razreshimost fizicheski i geometricheski nelineinoi zadachi teorii trekhsloinykh plastin s tranversalno-myagkim zapolnitelem”, Izv. vuzov. Matem., 2015, no. 10, 66–71

[5] Paimushin V. N., Kholmogorov S. A., Badriev I. B., “Consistent equations of nonlinear multilayer shells theory in the quadratic approximation”, Lobachevskii J. Math., 40:3 (2019), 349–363 | DOI | MR | Zbl

[6] Timergaliev S. N., Teoremy suschestvovaniya v nelineinoi teorii tonkikh uprugikh obolochek, Izd-vo Kazansk. un-ta, Kazan, 2011

[7] Timergaliev S. N., “O suschestvovanii reshenii geometricheski nelineinykh zadach dlya pologikh obolochek tipa Timoshenko so svobodnymi krayami”, Izv. vuzov. Matem., 2014, no. 3, 40–56 | MR | Zbl

[8] Timergaliev S. N., “K voprosu o suschestvovanii reshenii nelineinoi kraevoi zadachi dlya sistemy differentsialnykh uravnenii s chastnymi proizvodnymi teorii pologikh obolochek tipa Timoshenko so svobodnymi krayami”, Differents. uravneniya, 51:3 (2015), 373–386 | MR | Zbl

[9] Timergaliev S. N., “Metod integralnykh uravnenii v nelineinykh kraevykh zadachakh dlya pologikh obolochek tipa Timoshenko so svobodnymi krayami”, Izv. vuzov. Matem., 2017, no. 4, 59–75 | Zbl

[10] Timergaliev S. N., “K probleme razreshimosti nelineinykh zadach ravnovesiya pologikh obolochek tipa Timoshenko”, Priklad. matem. i mekhan., 82:1 (2018), 98–113

[11] Timergaliev S. N., “Metod integralnykh uravnenii issledovaniya razreshimosti kraevykh zadach dlya sistemy nelineinykh differentsialnykh uravnenii teorii pologikh neodnorodnykh obolochek tipa Timoshenko”, Differents. uravneniya, 55:2 (2019), 239–255 | MR

[12] Timergaliev S. N., “O suschestvovanii reshenii nelineinykh zadach ravnovesiya pologikh neodnorodnykh anizotropnykh obolochek tipa Timoshenko”, Izv. vuzov. Matem., 2019, no. 8, 45–61 | Zbl

[13] Timergaliev S. N., “K probleme razreshimosti nelineinykh kraevykh zadach dlya proizvolnykh izotropnykh pologikh obolochek tipa Timoshenko so svobodnymi krayami”, Izv. vuzov. Matem., 2021, no. 4, 90–107 | MR | Zbl

[14] Timergaliev S. N., “O razreshimosti nelineinykh kraevykh zadach dlya sistemy differentsialnykh uravnenii ravnovesiya pologikh anizotropnykh obolochek tipa Timoshenko s nezakreplennymi krayami”, Differents. uravneniya, 57:4 (2021), 507–525 | MR | Zbl

[15] Galimov K. Z., Osnovy nelineinoi teorii tonkikh obolochek, Izd-vo Kazansk. un-ta, Kazan, 1975

[16] Vekua I. N., Obobschennye analiticheskie funktsii, Nauka, M., 1988

[17] Muskhelishvili N. I., Singulyarnye integralnye uravneniya. Granichnye zadachi teorii funktsii i nekotorye ikh prilozheniya k matematicheskoi fizike, Nauka, M., 1962 | MR

[18] Presdorf Z., Nekotorye klassy singulyarnykh uravnenii, Mir, M., 1979

[19] Gakhov F. D., Kraevye zadachi, 2-e izd., Fizmatgiz, M., 1963

[20] Krasnoselskii M. A., Topologicheskie metody v teorii nelineinykh integralnykh uravnenii, Gostekhizdat, M., 1956 | MR