Integral representation of the Mittag-Leffler function
Izvestiâ vysših učebnyh zavedenij. Matematika, no. 4 (2022), pp. 49-66.

Voir la notice de l'article provenant de la source Math-Net.Ru

Generalization of the integral representation of the gamma function has been obtained, which shows that the Hankel contour assumes rotation in the complex plane. The range of admissible values for the contour rotation angle is set. Using this integral representation, generalization of the integral representation of the Mittag-Leffler function has been obtained that expresses the value of this function in terms of the contour integral.
Keywords: gamma-function, Mittag-Leffler function.
@article{IVM_2022_4_a4,
     author = {V. V. Saenko},
     title = {Integral representation of the {Mittag-Leffler} function},
     journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika},
     pages = {49--66},
     publisher = {mathdoc},
     number = {4},
     year = {2022},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/IVM_2022_4_a4/}
}
TY  - JOUR
AU  - V. V. Saenko
TI  - Integral representation of the Mittag-Leffler function
JO  - Izvestiâ vysših učebnyh zavedenij. Matematika
PY  - 2022
SP  - 49
EP  - 66
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IVM_2022_4_a4/
LA  - ru
ID  - IVM_2022_4_a4
ER  - 
%0 Journal Article
%A V. V. Saenko
%T Integral representation of the Mittag-Leffler function
%J Izvestiâ vysših učebnyh zavedenij. Matematika
%D 2022
%P 49-66
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IVM_2022_4_a4/
%G ru
%F IVM_2022_4_a4
V. V. Saenko. Integral representation of the Mittag-Leffler function. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 4 (2022), pp. 49-66. http://geodesic.mathdoc.fr/item/IVM_2022_4_a4/

[1] Mittag-Leffler G., “Sur la représentation analytique d'une branche uniforme d'une fonction monogène: Première note”, Acta Math., 23 (1900), 43–62 | DOI | MR

[2] Mittag-Leffler G., “Sur la représentation analytique d'une branche uniforme d'une fonction monogène: Seconde note”, Acta Math., 24 (1901), 183–204 | DOI | MR

[3] Mittag-Leffler G., “Sur la représentation analytique d'une branche uniforme d'une fonction monogène: Troisième note”, Acta Math., 24 (1901), 205–244 | DOI | MR

[4] Mittag-Leffler G., “Sur la représentation analytique d'une branche uniforme d'une fonction monogène: Quatrième note”, Acta Math., 26 (1902), 353–391 | DOI | MR

[5] Mittag-Leffler G., “Sur la représentation analytique d'une branche uniforme d'une fonction monogène: Cinquième note”, Acta Math., 29 (1905), 101–181 | DOI | MR

[6] Mittag-Leffler G., “Sur la répresentation analytique d'une branche uniforme d'une fonction monogène: Sixième note”, Acta Math., 42 (1920), 285–308 | DOI | MR

[7] Wiman A., “{Ü}ber den Fundamentalsatz in der Teorie der Funktionen $E_a(x)$”, Acta Math., 29 (1905), 191–201 | DOI | MR | Zbl

[8] Wiman A., “{Ü}ber die Nullstellen der Funktionen $E_a(x)$”, Acta Math., 29 (1905), 217–234 | DOI | MR | Zbl

[9] Humbert P., Agarwal R. P., “Sur la fonction de Mittag-Leffler et quelques-unes de ses généralisations”, Bull. Sci. Math., II. Sér., 77 (1953), 180–185 | MR | Zbl

[10] Humbert P., “Quelques résultats rélatifs à la fonction de Mittag-Leffler”, C. R. Acad. Sci. Paris, 236 (1953), 1467–1468 | MR | Zbl

[11] Agarwal R. P., “A propos d'une note de M. Pierre Humbert”, C. R. Acad. Sci. Paris, 236 (1953), 2031–2032 | MR | Zbl

[12] Dzhrbashyan M. M., “Ob asimptoticheskom povedenii funktsii tipa Mittag-Lefflera”, DAN Arm. SSR, 19:3 (1954), 65–72 | Zbl

[13] Dzhrbashyan M. M., “Ob integralnom predstavlenii funktsii, nepreryvnykh na neskolkikh luchakh (obobschenie integrala Fure)”, Izv. AN SSSR. Ser. matem., 18:5 (1954), 427–448 | Zbl

[14] Dzhrbashyan M. M., Integralnye preobrazovaniya i predstavleniya funktsii v kompleksnoi oblasti, Izd-vo Nauka, M., 1966 | MR

[15] Uchaikin V. V., Sibatov R. T., “Statistical model of fluorescence blinking”, J. Experimental and Theoretical Phys., 109:4 (2009), 537–546 | DOI

[16] Uchaikin V. V., Cahoy D. O., Sibatov R. T., “Fractional processes: from Poisson to branching one”, International J. Bifurcation and Chaos, 18:09 (2008), 2717–2725 | DOI | MR | Zbl

[17] Cahoy D. O., Uchaikin V. V., Woyczynski W. A., “Parameter estimation for fractional Poisson processes”, J. Stat. Planning and Inference, 140:11 (2010), 3106–3120 | DOI | MR | Zbl

[18] Korolev V., Zeifman A., “Convergence of statistics constructed from samples with random sizes to the Linnik and Mittag-Leffler distributions and their generalizations”, J. Korean Stat. Soc., 46:2 (2017), 161–181 | DOI | MR | Zbl

[19] Bening V. E., Korolev V. Y., Sukhorukova T. A., Gusarov G. G., Saenko V. V., Uchaikin V. V., Kolokoltsov V. N., “Fractionally stable distributions”, Stochastic Models of Structural Plasma Turbulence, De Gruyeter, Berlin–Boston, 2012, 175–244 ; Brill Acad. Publ., Utrecht, 2006 | MR | DOI

[20] Saenko V. V., “Integral Representation of the Fractional Stable Density”, J. Math. Sci., 248 (2020), 51–66 | DOI | MR

[21] Bateman H., Higher Transcendental Functions, v. 3, McGraw-Hill Book Company, New York, 1955 | Zbl

[22] Gorenflo R., Kilbas A. A., Mainardi F., Rogosin S. V., Mittag-Leffler Functions, Related Topics and Applications, Springer Monographs in Math., Springer-Verlag, Berlin–Heidelberg, 2014 | DOI | MR | Zbl

[23] Diethelm K., “Mittag-Leffler function”, The Analysis of Fractional Differential Equations, 2004, Springer-Verlag, Berlin–Heidelberg, 2010, 67–73 | DOI

[24] Mathai A. M., Haubold H. J., “Mittag-Leffler Functions and Fractional Calculus”, Special Functions for Applied Scientists, 2008, 79–134 | DOI | MR

[25] Gorenflo R., Mainardi F., Rogosin S., “Mittag-Leffler function: properties and applications”, Handbook of Fractional Calculus with Applications, v. 1, Basic Theory, eds. Kochubei A., Luchko Y., De Gruyter, Berlin–Boston, 2019, 269–296 | DOI | MR

[26] Popov A. Yu., Sedletskii A. M., “Raspredelenie kornei funktsii Mittag-Lefflera”, Sovremen. matem. Fundament. napravleniya, 40, 2011, 3–171

[27] Rogosin S., “The role of the Mittag-Leffler function in fractional modeling”, Math., 3:2 (2015), 368–381 | DOI | Zbl

[28] Gorenflo R., Loutchko J., Luchko Y., “Computation of the Mittag-Leffler function $E_{\alpha,\beta}(z)$ and its derivative”, Fract. Calc. Appl. Anal., 5:4 (2002), 491–518 | MR | Zbl

[29] Seybold H., Hilfer R., “Numerical Algorithm for Calculating the Generalized Mittag-Leffler Function”, SIAM J. Numer. Anal., 47:1 (2008), 69–88 | DOI | MR

[30] Haubold H. J., Mathai A. M., Saxena R. K., “Mittag-Leffler Functions and Their Applications”, J. Appl. Math., 2011 (2011), 1–51 | DOI | MR

[31] Parovik R. I., “Osobennosti vychisleniya funktsii Mittag-Lefflera v sisteme kompyuternoi matematiki Maple”, Vestn. KRAUNTs. Fiz.-matem. nauki, 2:5 (2012), 51–61 | DOI | Zbl

[32] Markushevich A. I., Teoriya analiticheskikh funktsii, v. 2, Dalneishee postroenie teorii, 2-e izd., Nauka, M., 1968 | MR

[33] Saenko V. V., “Two Forms of the Integral Representations of the Mittag-Leffler Function”, Math., 8:7 (2020), 1101 | DOI | MR