A boundary value problem with conjugation conditions for a degenerate the equations with the Caputo fractional derivative
Izvestiâ vysših učebnyh zavedenij. Matematika, no. 4 (2022), pp. 27-36.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper, for a degenerate higher-order equation with a fractional derivative in the sense of Caputo, a nonlocal problem with conjugation conditions in a rectangular domain is studied. The solution is constructed in the form of a Fourier series in the eigenfunctions of a one-dimensional problem. A criterion for the uniqueness of a solution is given.
Keywords: even order equation, fractional Caputo derivative, degeneration, eigenvalue, eigenfunction, Fourier series
Mots-clés : conjugation conditions, convergence.
@article{IVM_2022_4_a2,
     author = {B. Yu. Irgashev},
     title = {A boundary value problem with conjugation conditions for a degenerate the equations with the {Caputo} fractional derivative},
     journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika},
     pages = {27--36},
     publisher = {mathdoc},
     number = {4},
     year = {2022},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/IVM_2022_4_a2/}
}
TY  - JOUR
AU  - B. Yu. Irgashev
TI  - A boundary value problem with conjugation conditions for a degenerate the equations with the Caputo fractional derivative
JO  - Izvestiâ vysših učebnyh zavedenij. Matematika
PY  - 2022
SP  - 27
EP  - 36
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IVM_2022_4_a2/
LA  - ru
ID  - IVM_2022_4_a2
ER  - 
%0 Journal Article
%A B. Yu. Irgashev
%T A boundary value problem with conjugation conditions for a degenerate the equations with the Caputo fractional derivative
%J Izvestiâ vysših učebnyh zavedenij. Matematika
%D 2022
%P 27-36
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IVM_2022_4_a2/
%G ru
%F IVM_2022_4_a2
B. Yu. Irgashev. A boundary value problem with conjugation conditions for a degenerate the equations with the Caputo fractional derivative. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 4 (2022), pp. 27-36. http://geodesic.mathdoc.fr/item/IVM_2022_4_a2/

[1] Nakhushev A. M., Drobnoe ischislenie i ego primenenie, Fizmatlit, M., 2003

[2] Bogolyubov A. N., Koblikov A. A., Smirnova D. D., Shapkina N. E., “Matematicheskoe modelirovanie sred s vremennoi dispersiei pri pomoschi drobnogo differentsirovaniya”, Matem. modelirovanie, 25:12 (2013), 50–64 | MR | Zbl

[3] Gelfand I. M., “Nekotorye voprosy analiza i differentsialnykh uravnenii”, UMN, 14 (3):87 (1959), 3–19 | Zbl

[4] Struchina G. M., “Zadacha o sopryazhenii dvukh uravnenii”, Inzhenerno-fiz. zhurn., 4:11 (1961), 99–104

[5] Uflyand Ya. S., “K voprosu o rasprostranenii kolebanii v sostavnykh elektricheskikh liniyakh”, Inzhenerno-fiz. zhurn., 7:1 (1964), 89–92

[6] Sabitov K. B., “Nachalno-granichnaya i obratnye zadachi dlya neodnorodnogo uravneniya smeshannogo parabolo-giperbolicheskogo uravneniya”, Matem. zametki, 102:3 (2017), 415–435 | MR | Zbl

[7] Sabitov K. B., “Nelokalnaya zadacha dlya uravneniya parabolo-giperbolicheskogo tipa v pryamougolnoi oblasti”, Matem. zametki, 89:4 (2011), 596–602 | Zbl

[8] Sabitov K. B., Safin E. M., “Obratnaya zadacha dlya uravneniya smeshannogo parabolo-giperbolicheskogo tipa”, Matem. zametki, 87:6 (2010), 907–918

[9] Sabitov K. B., “Zadacha Trikomi dlya uravneniya smeshannogo parabolo-giperbolicheskogo v pryamougolnoi oblasti”, Matem. zametki, 86:2 (2009), 273–279 | Zbl

[10] Berdyshev A. S., Cabada A., Karimov E. T., “On a non-local boundary problem for a parabolic-hyperbolic equation involving a Riemann-Liouville fractional differential operator”, Nonlinear Anal.: Theory, Methods and Appl., 75:6 (2012), 3268–3273 | DOI | MR | Zbl

[11] Agarwal P., Berdyshev A. S., Karimov E. T., “Solvability of a non-local problem with integral transmitting condition for mixed type equation with Caputo fractional derivative”, Results in Math., 71:3–4 (2017), 1235–1257 | DOI | MR | Zbl

[12] Berdyshev A. S., Karimov E. T., Akhtaeva N., “Boundary value problems with integral gluing conditions for fractional-order mixed-type equation”, International J. Diff. Equat., 2011 | MR

[13] Abdullaev O.Kh., Sadarangani K., “Non-local problems with integral gluing condition for loaded mixed type equations involving the Caputo fractional derivative”, Electron. J. Diff. Equat., 2016, no. 164, 1–10 | MR

[14] Masaeva O.Kh., “Uniqueness of solutions to Dirichlet problems for generalized Lavrent'ev–Bitsadze equations with a fractional derivative”, Electron. J. Diff. Equat., 2017:74 (2017), 1–8 | MR

[15] Berdyshev A. S., Cabada A., Kadirkulov B. J., “The Samarskii-Ionkin type problem for the fourth order parabolic equation with fractional differential operator”, Comput. Math. Appl., 62:10 (2011), 3884–3893 | DOI | MR | Zbl

[16] Berdyshev A. S., Kadirkulov B. J., “On a nonlocal problem for a fourth-order parabolic equation with the fractional Dzhrbashyan-Nersesyan operator”, Diff. Equat., 52:1 (2016), 122–127 | DOI | MR | Zbl

[17] Apakov Yu.P., Irgashev B.Yu., “Boundary-value problem for a degenerate high-odd-order equation”, Ukrain. Math. J., 66:10 (2015), 1475–1490 | DOI | MR | Zbl

[18] Dzhrbashyan M. M., Integralnye preobrazovaniya i predstavleniya funktsii v kompleksnoi oblasti, Nauka, M., 1966 | MR

[19] Pskhu A. V., “O veschestvennykh nulyakh funktsii tipa Mittag–Lefflera”, Matem. zametki, 77:4 (2005), 592–599 | MR | Zbl