The method of total approximation of the solution of the Dirichlet problem for a multidimensional Sobolev-type equation
Izvestiâ vysših učebnyh zavedenij. Matematika, no. 4 (2022), pp. 15-26.

Voir la notice de l'article provenant de la source Math-Net.Ru

We study the Dirichlet problem for a multidimensional differential equation of Sobolev type with variable coefficients. The considered equation is reduced to an integro-differential equation of parabolic type with a small parameter. For an approximate solution of the obtained problem, a locally one-dimensional difference scheme is constructed. Using the method of energy inequalities, an a priori estimate is obtained for the solution of a locally one-dimensional difference scheme, which implies its stability and convergence. For a two-dimensional problem, an algorithm for the numerical solution of the problem posed was constructed, numerical experiments were carried out on test examples, illustrating the theoretical results obtained in this work.
Keywords: boundary value problems, a priori estimate, multidimensional Sobolev-type equation, Dirichlet problem, locally one-dimensional scheme, stability
Mots-clés : convergence.
@article{IVM_2022_4_a1,
     author = {M. Kh. Beshtokov},
     title = {The method of total approximation of the solution of the {Dirichlet} problem for a multidimensional {Sobolev-type} equation},
     journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika},
     pages = {15--26},
     publisher = {mathdoc},
     number = {4},
     year = {2022},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/IVM_2022_4_a1/}
}
TY  - JOUR
AU  - M. Kh. Beshtokov
TI  - The method of total approximation of the solution of the Dirichlet problem for a multidimensional Sobolev-type equation
JO  - Izvestiâ vysših učebnyh zavedenij. Matematika
PY  - 2022
SP  - 15
EP  - 26
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IVM_2022_4_a1/
LA  - ru
ID  - IVM_2022_4_a1
ER  - 
%0 Journal Article
%A M. Kh. Beshtokov
%T The method of total approximation of the solution of the Dirichlet problem for a multidimensional Sobolev-type equation
%J Izvestiâ vysših učebnyh zavedenij. Matematika
%D 2022
%P 15-26
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IVM_2022_4_a1/
%G ru
%F IVM_2022_4_a1
M. Kh. Beshtokov. The method of total approximation of the solution of the Dirichlet problem for a multidimensional Sobolev-type equation. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 4 (2022), pp. 15-26. http://geodesic.mathdoc.fr/item/IVM_2022_4_a1/

[1] Sveshnikov A. G., Alshin A. B., Korpusov M. O. Pletner Yu. D., Lineinye i nelineinye uravneniya sobolevskogo tipa, Fizmatlit, M., 2007

[2] Barenblatt G. I., Entov V. M., Ryzhik V. M., Dvizhenie zhidkostei i gazov v prirodnykh plastakh, Nedra, M., 1984

[3] Shkhanukov M. Kh., “O nekotorykh kraevykh zadachakh dlya uravneniya tretego poryadka, voznikayuschikh pri modelirovanii filtratsii zhidkosti v poristykh sredakh”, Differents. uravneniya, 18:4 (1982), 689–699 | MR | Zbl

[4] van Duijn C. J., Cuesta C., Hulshof J., “Infiltration in Porous Media with Dynamic Capillary Pressure: Travelling Waves”, European J. Anaesthesiology, 11 (2000), 381–397 | MR | Zbl

[5] Chudnovskii A. F., Teplofizika pochv, Nauka, M., 1976

[6] Hallaire M., “Le Potentiel Efficace de l'Eau dans le Sol en Regime de Dessechement”, L 'Eau et la Production Vegetale. Paris: Institut National de la Recherche Agronomique, 9 (1964), 27–62

[7] Colton D. L., “On the analytic theory of pseudoparabolic equations”, Quart. J. Math., 23 (1972), 179–192 | DOI | MR | Zbl

[8] Dzektser E. S., “Uravneniya dvizheniya podzemnykh vod so svobodnoi poverkhnostyu v mnogosloinykh sredakh”, DAN SSSR, 220:3 (1975), 540–543 | Zbl

[9] Chen P. J., Curtin M. E., “On a theory of heat conduction involving two temperatures”, J. Appl. Math. and Phys. (ZAMP), 19 (1968), 614–627 | DOI | Zbl

[10] Ting T. W., “Certain non-steady flows of second-order fluids”, Archive for Rational Mech. and Anal., 14 (1963), 1–26 | DOI | MR | Zbl

[11] Abrashin V. N., Asmolik V. A., “Lokalno-odnomernye raznostnye skhemy dlya mnogomernykh kvazilineinykh giperbolicheskikh uravnenii”, Differents. uravneniya, 18:7 (1982), 1107–1117 | MR

[12] Samarskii A. A., “Ob odnom ekonomichnom raznostnom metode resheniya mnogomernogo parabolicheskogo uravneniya v proizvolnoi oblasti”, Zhurn. vychisl. matem. i matem. fiz., 2:5 (1962), 787–811 | Zbl

[13] Samarskii A. A., “Lokalno-odnomernye raznostnye skhemy na neravnomernykh setkakh”, Zhurn. vychisl. matem. i matem. fiz., 3:3 (1963), 431–466

[14] Samarskii A. A., “Lokalno-odnomernye raznostnye skhemy dlya mnogomernykh uravnenii giperbolicheskogo tipa proizvolnoi oblasti”, Zhurn. vychisl. matem. i matem. fiz., 4:4 (1964), 638–648

[15] Beshtokov M. Kh., “Raznostnyi metod resheniya odnoi nelokalnoi kraevoi zadachi dlya psevdoparabolicheskogo uravneniya tretego poryadka”, Differents. uravneniya, 49:9 (2013), 1170–1177 | MR | Zbl

[16] Beshtokov M. Kh., “O chislennom reshenii nelokalnoi kraevoi zadachi dlya vyrozhdayuschegosya psevdoparabolicheskogo uravneniya”, Differents. uravneniya, 52:10 (2016), 1393–1406 | MR | Zbl

[17] Beshtokov M. Kh., “Raznostnyi metod resheniya nelokalnoi kraevoi zadachi dlya vyrozhdayuschegosya psevdoparabolicheskogo uravneniya tretego poryadka s peremennymi koeffitsientami”, Zhurn. vychisl. matem. i matem. fiz., 56:10 (2016), 1780–1794 | MR | Zbl

[18] Beshtokov M. Kh., “Kraevye zadachi dlya vyrozhdayuschikhsya i nevyrozhdayuschikhsya uravnenii sobolevskogo tipa s nelokalnym istochnikom v differentsialnoi i raznostnoi traktovkakh”, Differents. uravneniya, 54:2 (2018), 249–266 | MR | Zbl

[19] Beshtokov M. Kh., “Chislennoe issledovanie nachalno-kraevykh zadach dlya uravneniya sobolevckogo tipa s drobnoi po vremeni proizvodnoi”, Zhurn. vychisl. matem. i matem. fiz., 59:2 (2019), 185–202 | MR | Zbl

[20] Beshtokov M. Kh., “Kraevye zadachi dlya nagruzhennykh psevdoparabolicheskikh uravnenii drobnogo poryadka i raznostnye metody ikh resheniya”, Izv. vuzov. Matem., 2019, no. 2, 3–12 | MR | Zbl

[21] Vishik M. I., Lyusternik L. A., “Regulyarnoe vyrozhdenie i pogranichnyi sloi dlya lineinykh differenitsalnykh uravnenii s malym parametrom”, UMN, 12:5 (1957), 3–122 | Zbl

[22] Godunov S. K., Ryabenkii V. S., Raznostnye skhemy, Nauka, M., 1977 | MR

[23] Kolmogorov A. N., Fomin S. V., Elementy teorii funktsii i funktsionalnogo analiza, Nauka, M., 1968 | MR

[24] Samarskii A. A., Teoriya raznostnykh skhem, Nauka, M., 1977