Exact inequalities between the best polynomial approximations and averaged norms of finite differences in the $B_{2}$ space and widths of some classes of functions
Izvestiâ vysših učebnyh zavedenij. Matematika, no. 3 (2022), pp. 61-70.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper, exact constants in Jackson–Stechkin type inequalities for characterizing the smoothness of the functions $\Lambda_{m}(f), \ m\in\mathbb{N},$ defined by averaging the norms of finite differences of the $m$-th order of the function $f$ over the argument $z=\rho e^{it}$ analytic in the unit disc belonging $U:=\{z:|z|1\}$ to the Bergman space $B_{2}$ are found. For the classes of analytic functions in the disk $U$, defined by the characteristics of smoothness $\Lambda_{m}(f)$ and $\Phi$ majorants, satisfying a number of conditions, the exact values of various $n$-widths are calculated.
Keywords: generalized modulus of continuity, Jackson–Stechkin type inequality, best approximation, upper boundarie, $n$-widths.
@article{IVM_2022_3_a6,
     author = {Kh. M. Khuromonov},
     title = {Exact inequalities between the best polynomial approximations and averaged norms of finite differences in the $B_{2}$ space and widths of some classes of functions},
     journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika},
     pages = {61--70},
     publisher = {mathdoc},
     number = {3},
     year = {2022},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/IVM_2022_3_a6/}
}
TY  - JOUR
AU  - Kh. M. Khuromonov
TI  - Exact inequalities between the best polynomial approximations and averaged norms of finite differences in the $B_{2}$ space and widths of some classes of functions
JO  - Izvestiâ vysših učebnyh zavedenij. Matematika
PY  - 2022
SP  - 61
EP  - 70
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IVM_2022_3_a6/
LA  - ru
ID  - IVM_2022_3_a6
ER  - 
%0 Journal Article
%A Kh. M. Khuromonov
%T Exact inequalities between the best polynomial approximations and averaged norms of finite differences in the $B_{2}$ space and widths of some classes of functions
%J Izvestiâ vysših učebnyh zavedenij. Matematika
%D 2022
%P 61-70
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IVM_2022_3_a6/
%G ru
%F IVM_2022_3_a6
Kh. M. Khuromonov. Exact inequalities between the best polynomial approximations and averaged norms of finite differences in the $B_{2}$ space and widths of some classes of functions. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 3 (2022), pp. 61-70. http://geodesic.mathdoc.fr/item/IVM_2022_3_a6/

[1] Ditzian Z., Totik V., Moduli of Smoothness, Springer Ser. Comput. Math., 9, New York, 1997 | MR

[2] Sendov B., Popov V., Usrednennye moduli gladkosti, Mir, M., 1988 | MR

[3] Runovskii K. V., “O priblizhenii semeistvami lineinykh polinomialnykh operatorov v prostranstve $L_{p},\ 0

1$”, Matem. sb., 185:8 (1994), 81–102 | Zbl

[4] Abilov V. A., Abilova F. V., “Nekotorye voprosy priblizheniya $2\pi$-periodicheskikh funktsii summami Fure v prostranstve $L_{2}(2\pi)$”, Matem. zametki, 76:6 (2004), 803–811 | Zbl

[5] Shabozov M. Sh., Yusupov G. A., “Tochnye konstanty v neravenstvakh tipa Dzheksona i tochnye znacheniya poperechnikov nekotorykh klassov funktsii v $L_2$”, Sib. matem. zhurn., 52:6 (2011), 1414–1427 | MR | Zbl

[6] Vakarchuk S. B., Zabutnaya V. I., “Neravenstva tipa Dzheksona–Stechkina dlya spetsialnykh modulei nepreryvnosti i poperechniki funktsionalnykh klassov v prostranstve $L_2$”, Matem. zametki, 92:4 (2012), 497–514 | Zbl

[7] Vakarchuk S. B., Zabutnaya V. I., “Neravenstva mezhdu nailuchshimi polinomialnymi priblizheniyami i nekotorymi kharakteristikami gladkosti v prostranstve $L_{2}$ i poperechniki klassov funktsii”, Matem. zametki, 99:2 (2016), 215–238 | Zbl

[8] Vakarchuk S. B., Shabozov M.Sh., Zabutnaya V. I., “Struktural characteristiks of functions from $L_{2}$ and the exact values of widths of some functional classes”, J. Math. Sci., 206:1 (2015), 97–114 | DOI | MR | Zbl

[9] Shabozov M. Sh., Saidusainov M. S., “Verkhnie grani priblizheniya nekotorykh klassov funktsii kompleksnoi peremennoi ryadami Fure v prostranstve $L_{2}$ i znacheniya $n$-poperechnikov”, Matem. zametki, 103:4 (2018), 617–631 | Zbl

[10] Shabozov M. Sh., Khuromonov Kh. M., “O nailuchshem priblizhenii v srednem funktsii kompleksnogo peremennogo ryadami Fure v prostranstve Bergmana”, Izv. vuzov. Matem., 2020, no. 2, 74–92 | Zbl

[11] Shabozov M. Sh., Saidusainov M. S., “Priblizhenie funktsii komplneksnogo peremennogo summami Fure po ortogonalnym sistemam v $L_{2}$”, Izv. vuzov. Matem., 2020, no. 6, 65–72 | Zbl

[12] Shabozov M. Sh., “Nekotorye voprosy approksimatsii periodicheskikh funktsii trigonometricheskimi polinomami v $L_{2}$”, Chebyshevsk. sb., 20:4 (2019), 385–398 | MR | Zbl

[13] Vakarchuk S. B., “Jackson-Type Inequalities with Generalized Modulus of Continuity and Exact Values of the $n$-Widths for the Classes of $(\psi,\beta)$-Differentiable Functions in $L_{2}$. III”, Ukr. Math. J., 68:10 (2017), 1495–1518 | DOI | MR | Zbl

[14] Vakarchuk S. B., “Best mean-square approximation of functions defined on the real axis by entire functions of exponential type”, Ukr. Math. J., 64:5 (2012), 604–615 | DOI | MR | Zbl

[15] Smirnov V. I., Lebedev N. A., Konstruktivnaya teoriya funktsii kompleksnogo peremennogo, Nauka, M.-L., 1964 | MR

[16] Gradshtein I. S., Ryzhik I. M., Tablitsy integralov summ, ryadov i proizvedenii, Nauka, M., 1971 | MR

[17] Tikhomirov V. M., Nekotorye voprosy teorii priblizhenii, MGU, M., 1976

[18] Pinkus A., $n$-Widths in Approximation Theory, Springer-Verlag, Berlin–Heidelberg–New York–Tokyo, 1985 | MR | Zbl