Complete solution of a class of differential pursuit games with integral constraint and impulse control
Izvestiâ vysših učebnyh zavedenij. Matematika, no. 3 (2022), pp. 28-37.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper, we consider one class of differential games, for which, using the method of resolving functions, we have finally solved the problem of the possibility or impossibility of catching the evader from a given initial point by the pursuer. In this case, an integral constraint is imposed on the controls of the pursuer, and the control of the evader has an impulsive character, and it is represented using a generalized Dirac function.
Keywords: capture, pursuer, evader, impulsive control, integrated constraint, resolving function.
@article{IVM_2022_3_a3,
     author = {N. A. Mamadaliev and B. Kh. Khayitkulov},
     title = {Complete solution of a class of differential pursuit games with integral constraint and impulse control},
     journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika},
     pages = {28--37},
     publisher = {mathdoc},
     number = {3},
     year = {2022},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/IVM_2022_3_a3/}
}
TY  - JOUR
AU  - N. A. Mamadaliev
AU  - B. Kh. Khayitkulov
TI  - Complete solution of a class of differential pursuit games with integral constraint and impulse control
JO  - Izvestiâ vysših učebnyh zavedenij. Matematika
PY  - 2022
SP  - 28
EP  - 37
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IVM_2022_3_a3/
LA  - ru
ID  - IVM_2022_3_a3
ER  - 
%0 Journal Article
%A N. A. Mamadaliev
%A B. Kh. Khayitkulov
%T Complete solution of a class of differential pursuit games with integral constraint and impulse control
%J Izvestiâ vysših učebnyh zavedenij. Matematika
%D 2022
%P 28-37
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IVM_2022_3_a3/
%G ru
%F IVM_2022_3_a3
N. A. Mamadaliev; B. Kh. Khayitkulov. Complete solution of a class of differential pursuit games with integral constraint and impulse control. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 3 (2022), pp. 28-37. http://geodesic.mathdoc.fr/item/IVM_2022_3_a3/

[1] Pontryagin L. S., Izbrannye nauchnye trudy, v. 2, Nauka, M., 1988

[2] Satimov N. Yu., Metody resheniya zadachi presledovaniya v teorii differentsialnykh igr, Nats. b-ka Uzbekistana im. A. Navoi, Tashkent, 2019

[3] Azamov A., “Poluustoichivost i dvoistvennost v teorii alternirovannogo integrala Pontryagina”, Dokl. AN SSSR, 299:2 (1988), 265–268 | Zbl

[4] Azamov A., “K pervomu metodu Pontryagina v zadachakh presledovaniya”, Matem. zametki, 90:2 (2011), 163–167 | Zbl

[5] Petrosyan L. A., Differentsialnye igry presledovaniya, Izd-vo Leningradsk. un-ta, 1977

[6] Petrosyan L. A., “Igry presledovaniya s “liniei zhizni””, Vestn. Leningradsk. un-ta. Ser 1: Matem. Mekhan. Astronomiya, 3:13 (1967), 76–85 | Zbl

[7] Pshenichnyi B. N., Chikrii A. A., Rappoport I. S., “Effektivnyi metod resheniya differentsialnykh igr so mnogimi presledovatelyami”, Dokl. AN SSSR, 256:3 (1981), 530–535 | MR | Zbl

[8] Grigorenko H. L., Matematicheskie metody upravleniya neskolkimi dinamicheskimi protsessami, Izd-vo Moskovsk. un-ta, 1990

[9] Petrov N. N., Teoriya igr, Izd-vo Udmurdsk. un-ta, Izhevsk, 1991

[10] Ukhobotov V. I., Troitskii A. A., “Ob odnoi zadache impulsnogo presledovaniya”, Vestn. Yuzhno-Uralsk. un-ta. Ser. Matem. Mekhan. Fiz., 5:2 (2013), 79–87 | Zbl

[11] Ibragimov G. I., “Optimal Pursuit with Countably Many Pursuers and One Evader”, Diff. Equat., 41:5 (2005), 627–635 | DOI | MR | Zbl

[12] Ibragimov G. I., “Collective pursuit with integral constraints on the controls of players”, Siberian Adv. Math., 14:2 (2004), 14–26 | MR | Zbl

[13] Chikrii A. A., Konfliktno upravlyaemye protsessy, Nauk. dumka, Kiev, 1992

[14] Samatov B. T., “The-strategy in a differential game with linear control constraints”, J. Appl. Math. Mech., 78:3 (2014), 258–263 | DOI | MR | Zbl

[15] Belousov A. A., “Differentsialnye igry s integralnymi ogranicheniyami i impulsnymi upravleniyami”, Dokl. NAN Ukrainy, 2013, no. 11, 37–42 | Zbl

[16] Chikrii A. A., Bezmagorychnyi V. V., “Metod razreshayuschikh funktsii v lineinykh differentsialnykh igrakh s integralnymi ogranicheniyami”, Avtomatika, 1993, no. 4, 26–36 | MR

[17] Mamadaliev N. A., “O zadachakh presledovaniya v lineinykh differentsialnykh igrakh pri nalichii zapazdyvanii”, Izv. vuzov. Matem., 2010, no. 6, 16–22 | Zbl

[18] Mamadaliev N. A., “Zadacha presledovaniya dlya lineinykh igr s integralnymi ogranicheniyami na upravleniya igrokov”, Izv. vuzov. Matem., 2020, no. 3, 12–28 | Zbl

[19] Mamadaliev N. A., “Ob odnoi zadache presledovaniya s integralnymi ogranicheniyami na upravleniya igrokov”, Sib. matem. zhurn., 56:1 (2015), 129–148 | MR | Zbl

[20] Mamadaliev N. A., “O zadache presledovaniya dlya lineinykh differentsialnykh igr s razlichnymi ogranicheniyami na upravleniya igrokov”, Differents. uravneniya, 48:6 (2012), 860–873 | Zbl

[21] Chikrii A. A., Matichin I. I., “Lineinye differentsialnye igry s impulsnym upravleniem igrokov”, Tr. IMM UrO RAN, 11, no. 1, 2005, 212–224

[22] Tukhtasinov M., “Lineinaya differentsialnaya igra presledovaniya s impulsnymi i integralno-ograni-chennymi upravleniyami igrokov”, Tr. IMM UrO RAN, 22, no. 3, 2016, 273–282 | MR

[23] Chikrii A. A., Belousov A. A., “O lineinykh differentsialnykh igrakh s integralnymi ogranicheniyami”, Tr. IMM UrO RAN, 15, no. 4, 2009, 290–301

[24] Belousov A. A., “Impulsnye upravleniya v differentsialnykh igrakh s integralnymi ogranicheniyami”, Teor. optimalnykh reshenii, 2013, 50–58

[25] Krasovskii N. N., Teoriya upravleniya dvizheniem, Nauka, M., 1968

[26] Ukhobotov V. I., Troitskii A. A., “Ob odnoi zadache impulsnogo presledovaniya”, Vest. Yuzhno-Uralsk. un-ta. Ser. Matem. Mekhan. Fiz., 5:2 (2013), 79–87 | Zbl

[27] Ukhobotov V. I., “Vypuklaya igrovaya zadacha impulsnogo presledovaniya vtorogo poryadka”, XII Vserossiiskoe soveschanie po problemam upravleniya, Izd-vo problem upravleniya im. V.A. Trapeznikova, M., 2014, 2089–2095

[28] Kotlyachkova E. V., “K nestatsionarnoi zadache prostogo presledovaniya v klasse impulsnykh strategii”, Izv. IMM UdGU, 1:45 (2015), 106–113 | Zbl

[29] Yugai L. P., “Linear Differential Evasion Game with Locally Inertial Controls”, Vestn. Evraziisk. nats. un-ta im. L.N. Gumileva. Ser. Matem. Informatika, 129:4 (2019), 54–66

[30] Yugai L. P., “Zadacha ukloneniya traektorii ot razrezhennogo terminalnogo mnozhestva”, Dokl. Rossiisk. Akademii nauk. Matem., Informatika. Protsessy upravleniya, 495:1 (2020), 107–111 | DOI | Zbl

[31] Chikrii A. A., Chikrii G. Ts., “Matrichnye razreshayuschie funktsii v igrovykh zadachakh dinamiki”, Tr. IMM UrO RAN, 20, no. 3, 2014, 324–333

[32] Filippov A. F., Differentsialnye uravneniya s razryvnoi pravoi chastyu, Nauka, M., 1985 | MR

[33] Tukhtasinov M., Khaiitkulov B. Kh., “Polnoe reshenie zadachi konflikta s integralno-ogranichennym i impulsnym upravleniem dlya odnogo klassa differentsialnykh igr”, XI Vserossiisk. nauchn. konf. s mezhdunarodnym uchastiem “Matematicheskoe modelirovanie i kraevye zadachi”, v. 1, Izd-vo SamGTU, Samara, 2019, 356–359