Isomorphism and diffeomorphism of semisimple Lie Groups
Izvestiâ vysših učebnyh zavedenij. Matematika, no. 3 (2022), pp. 3-12
Cet article a éte moissonné depuis la source Math-Net.Ru
The connection between diffeomorphism and isomorphism of arbitrary semisimple Lie groups is studied. For the case of simple, simply connected Lie groups, the equivalence of diffeomorphism and isomorphism is proved. Some similar results are obtained for non-simply connected simple Lie groups and for simply connected semisimple Lie groups.
Keywords:
simple Lie algebra, semisimple Lie algebra
Mots-clés : simple Lie group, adjoint Lie group.
Mots-clés : simple Lie group, adjoint Lie group.
@article{IVM_2022_3_a0,
author = {V. V. Gorbatsevich},
title = {Isomorphism and diffeomorphism of semisimple {Lie} {Groups}},
journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika},
pages = {3--12},
year = {2022},
number = {3},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/IVM_2022_3_a0/}
}
V. V. Gorbatsevich. Isomorphism and diffeomorphism of semisimple Lie Groups. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 3 (2022), pp. 3-12. http://geodesic.mathdoc.fr/item/IVM_2022_3_a0/
[1] Vinberg E. B., Gorbatsevich V. V., Onischik A. L., “Stroenie grupp i algebr Li”, Gruppy Li i algebry Li-3, Itogi nauki i tekhn. Ser. Sovrem. probl. mat. Fundament. napravleniya, 41, VINITI, M., 1990, 5–253 | MR
[2] Toda H., “A note on compact semi-simple Lie groups”, Japan. J. Math., 2 (1976), 355–358 | DOI | MR
[3] Gorbatsevich V. V., “Ob odnom klasse razlozhenii poluprostykh grupp i algebr Li”, Matem. sb., 95 (137):2 (10) (1974), 294–304 | Zbl
[4] Boekholt S., “Compact Lie groups with isomorphic homotopy groups”, J. Lie Theory, 8 (1988), 183–185 | MR