On a primality test for natural numbers
Izvestiâ vysših učebnyh zavedenij. Matematika, no. 2 (2022), pp. 83-87
Cet article a éte moissonné depuis la source Math-Net.Ru
In this paper we investigate a new primality test for natural numbers that is an analogue of Miller–Rabin primality test replacing powering operation by using of binary sequences.
Keywords:
primality test, probabilistic, error probability.
Mots-clés : Miller–Rabin
Mots-clés : Miller–Rabin
@article{IVM_2022_2_a6,
author = {Sh. T. Ishmukhametov and G. G. Rubtsova and R. R. Khusnutdinov},
title = {On a primality test for natural numbers},
journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika},
pages = {83--87},
year = {2022},
number = {2},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/IVM_2022_2_a6/}
}
Sh. T. Ishmukhametov; G. G. Rubtsova; R. R. Khusnutdinov. On a primality test for natural numbers. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 2 (2022), pp. 83-87. http://geodesic.mathdoc.fr/item/IVM_2022_2_a6/
[1] Crandall R., Pomerance C., The prime numbers: a computational perspective, 2nd edition, Springer–Verlag, Berlin, 2005 | MR
[2] Rabin M. O., “Probabilistic algorithm for testing primality”, J. Number Theor., 12:1 (1980), 128–138 | MR | Zbl
[3] Ishmukhametov S., Rubtsova R., Mubarakov B. G., “On the number of witnesses in the Miller–Rabin primality test”, Symmetry, 12:6 (2020), 890
[4] Ishmukhametov S., Rubtsova R., Savelyev N., “The Error Probability of the Miller–Rabin Primality Test”, Lobachevskii J. Math., 39:7 (2018), 1010–1015 | MR | Zbl