Voir la notice de l'article provenant de la source Math-Net.Ru
@article{IVM_2022_2_a2, author = {M. M. Kokurin}, title = {A posteriori stopping in iteratively regularized {Gauss--Newton} type methods for approximating quasi-solutions of irregular operator equations}, journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika}, pages = {29--42}, publisher = {mathdoc}, number = {2}, year = {2022}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/IVM_2022_2_a2/} }
TY - JOUR AU - M. M. Kokurin TI - A posteriori stopping in iteratively regularized Gauss--Newton type methods for approximating quasi-solutions of irregular operator equations JO - Izvestiâ vysših učebnyh zavedenij. Matematika PY - 2022 SP - 29 EP - 42 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/IVM_2022_2_a2/ LA - ru ID - IVM_2022_2_a2 ER -
%0 Journal Article %A M. M. Kokurin %T A posteriori stopping in iteratively regularized Gauss--Newton type methods for approximating quasi-solutions of irregular operator equations %J Izvestiâ vysših učebnyh zavedenij. Matematika %D 2022 %P 29-42 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/item/IVM_2022_2_a2/ %G ru %F IVM_2022_2_a2
M. M. Kokurin. A posteriori stopping in iteratively regularized Gauss--Newton type methods for approximating quasi-solutions of irregular operator equations. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 2 (2022), pp. 29-42. http://geodesic.mathdoc.fr/item/IVM_2022_2_a2/