A posteriori stopping in iteratively regularized Gauss--Newton type methods for approximating quasi-solutions of irregular operator equations
Izvestiâ vysših učebnyh zavedenij. Matematika, no. 2 (2022), pp. 29-42.

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider a class of iteratively regularized Gauss–Newton type methods for approximating quasi-solutions of irregular nonlinear operator equations in Hilbert spaces. We assume that the Frechet derivative of the problem operator at the desired quasi-solution has a closed range. We propose an a-posteriori stopping rule for the considered methods and get an accuracy estimate which is proportional to the error level of input data.
Keywords: nonlinear operator equation, irregular equation, ill-posed problem, Gauss–Newton method, iterative regularization, Hilbert space, closed range, a-posteriori stopping rule, accuracy estimate.
Mots-clés : quasi-solution
@article{IVM_2022_2_a2,
     author = {M. M. Kokurin},
     title = {A posteriori stopping in iteratively regularized {Gauss--Newton} type methods for approximating quasi-solutions of irregular operator equations},
     journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika},
     pages = {29--42},
     publisher = {mathdoc},
     number = {2},
     year = {2022},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/IVM_2022_2_a2/}
}
TY  - JOUR
AU  - M. M. Kokurin
TI  - A posteriori stopping in iteratively regularized Gauss--Newton type methods for approximating quasi-solutions of irregular operator equations
JO  - Izvestiâ vysših učebnyh zavedenij. Matematika
PY  - 2022
SP  - 29
EP  - 42
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IVM_2022_2_a2/
LA  - ru
ID  - IVM_2022_2_a2
ER  - 
%0 Journal Article
%A M. M. Kokurin
%T A posteriori stopping in iteratively regularized Gauss--Newton type methods for approximating quasi-solutions of irregular operator equations
%J Izvestiâ vysših učebnyh zavedenij. Matematika
%D 2022
%P 29-42
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IVM_2022_2_a2/
%G ru
%F IVM_2022_2_a2
M. M. Kokurin. A posteriori stopping in iteratively regularized Gauss--Newton type methods for approximating quasi-solutions of irregular operator equations. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 2 (2022), pp. 29-42. http://geodesic.mathdoc.fr/item/IVM_2022_2_a2/

[1] Bakushinsky A. B., Kokurin M. M., Kokurin M.Yu., Regularization Algorithms for Ill–Posed Problems, Walter de Gruyter, Berlin–Boston, 2018 | MR

[2] Kaltenbacher B., Neubauer A., Scherzer O., Iterative Regularization Methods for Nonlinear Ill–Posed Problems, Walter de Gruyter, Berlin–New York, 2008 | MR

[3] Bakushinskii A. B., Kokurin M. Yu., Algoritmicheskii analiz neregulyarnykh operatornykh uravnenii, URSS, M., 2012

[4] Kokurin M. Yu., “Iterativno regulyarizovannye metody dlya neregulyarnykh nelineinykh operatornykh uravnenii s normalno razreshimoi proizvodnoi v reshenii”, Zhurn. vychisl. matem. i matem. fiz., 56:9 (2016), 1543–1555 | Zbl

[5] Kokurin M.Yu., “Accuracy estimates of Gauss–Newton-type iterative regularization methods for nonlinear equations with operators having normally solvable derivative at the solution”, J. Inverse and Ill-posed Probl., 24:4 (2016), 449–462 | MR | Zbl

[6] Bakushinskii A. B., Kokurin M. Yu., “Iterativno regulyarizovannyi metod Gaussa–Nyutona dlya operatornykh uravnenii s normalno razreshimoi proizvodnoi v reshenii”, Izv. vuzov. Matem., 2016, no. 8, 3–11 | Zbl

[7] Vainikko G. M., Veretennikov A. Yu., Iteratsionnye protsedury v nekorrektnykh zadachakh, Nauka, M., 1986 | MR