A posteriori stopping in iteratively regularized Gauss--Newton type methods for approximating quasi-solutions of irregular operator equations
Izvestiâ vysših učebnyh zavedenij. Matematika, no. 2 (2022), pp. 29-42
Voir la notice de l'article provenant de la source Math-Net.Ru
We consider a class of iteratively regularized Gauss–Newton type methods for approximating quasi-solutions of irregular nonlinear operator equations in Hilbert spaces. We assume that the Frechet derivative of the problem operator at the desired quasi-solution has a closed range. We propose an a-posteriori stopping rule for the considered methods and get an accuracy estimate which is proportional to the error level of input data.
Keywords:
nonlinear operator equation, irregular equation, ill-posed problem, Gauss–Newton method, iterative regularization, Hilbert space, closed range, a-posteriori stopping rule, accuracy estimate.
Mots-clés : quasi-solution
Mots-clés : quasi-solution
@article{IVM_2022_2_a2,
author = {M. M. Kokurin},
title = {A posteriori stopping in iteratively regularized {Gauss--Newton} type methods for approximating quasi-solutions of irregular operator equations},
journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika},
pages = {29--42},
publisher = {mathdoc},
number = {2},
year = {2022},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/IVM_2022_2_a2/}
}
TY - JOUR AU - M. M. Kokurin TI - A posteriori stopping in iteratively regularized Gauss--Newton type methods for approximating quasi-solutions of irregular operator equations JO - Izvestiâ vysših učebnyh zavedenij. Matematika PY - 2022 SP - 29 EP - 42 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/IVM_2022_2_a2/ LA - ru ID - IVM_2022_2_a2 ER -
%0 Journal Article %A M. M. Kokurin %T A posteriori stopping in iteratively regularized Gauss--Newton type methods for approximating quasi-solutions of irregular operator equations %J Izvestiâ vysših učebnyh zavedenij. Matematika %D 2022 %P 29-42 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/item/IVM_2022_2_a2/ %G ru %F IVM_2022_2_a2
M. M. Kokurin. A posteriori stopping in iteratively regularized Gauss--Newton type methods for approximating quasi-solutions of irregular operator equations. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 2 (2022), pp. 29-42. http://geodesic.mathdoc.fr/item/IVM_2022_2_a2/