The influence of external environment resistance coefficient on population dynamics
Izvestiâ vysših učebnyh zavedenij. Matematika, no. 1 (2022), pp. 65-73.

Voir la notice de l'article provenant de la source Math-Net.Ru

The article presents a certain delay logistic equation with diffusion and spatially-heterogeneous coefficients that describe external environment resistance of population. It is expected that the near-extreme situation is realized when external environment resistance coefficient increases without limit when approaching to one of the sides of distribution area. The matter of population change dynamics is investigated by computer analysis. Based on the obtained results the conclusion of delay logistic equation with diffusion use efficiency for qualitative description of heterogeneous environment population change dynamics is confirmed.
Mots-clés : parabolic equation, bifurcation
Keywords: delay differential equation, computer analysis.
@article{IVM_2022_1_a5,
     author = {S. A. Kaschenko and D. O. Loginov},
     title = {The influence of external environment resistance coefficient on population dynamics},
     journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika},
     pages = {65--73},
     publisher = {mathdoc},
     number = {1},
     year = {2022},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/IVM_2022_1_a5/}
}
TY  - JOUR
AU  - S. A. Kaschenko
AU  - D. O. Loginov
TI  - The influence of external environment resistance coefficient on population dynamics
JO  - Izvestiâ vysših učebnyh zavedenij. Matematika
PY  - 2022
SP  - 65
EP  - 73
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IVM_2022_1_a5/
LA  - ru
ID  - IVM_2022_1_a5
ER  - 
%0 Journal Article
%A S. A. Kaschenko
%A D. O. Loginov
%T The influence of external environment resistance coefficient on population dynamics
%J Izvestiâ vysših učebnyh zavedenij. Matematika
%D 2022
%P 65-73
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IVM_2022_1_a5/
%G ru
%F IVM_2022_1_a5
S. A. Kaschenko; D. O. Loginov. The influence of external environment resistance coefficient on population dynamics. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 1 (2022), pp. 65-73. http://geodesic.mathdoc.fr/item/IVM_2022_1_a5/

[1] Bitsadze A. V., Kraevye zadachi dlya ellipticheskikh uravnenii vtorogo poryadka, Nauka, M., 1966 | MR

[2] Savateev E. G., “O zadache identifikatsii koeffitsienta parabolicheskogo uravneniya”, Sib. matem. zhurn., 36:1 (1995), 177–185 | MR | Zbl

[3] Wright E. M., “A non-linear difference-differential equation”, J. Reine und Angew. Math. (Crelles J.), 194 (1955), 66–87 | MR | Zbl

[4] Kashchenko S. A., “Asymptotics of the Solutions of the Generalized Hutchinson Equation”, Automatic Control and Computer Sci., 47:7 (2013), 470–494 | DOI

[5] Kaschenko S. A., Loginov D. O., “Otsenka oblasti globalnoi ustoichivosti sostoyaniya ravnovesiya logisticheskogo uravneniya s zapazdyvaniem”, Izv. vuzov. Matem., 2020, no. 9, 39–55 | Zbl

[6] Kuang Y., Delay Differential Equations: With Applications in Population Dynamics, Math. in Sci. and Engineering, 191, Academic Press, New York, 1993 | MR | Zbl

[7] Gourley S. A., So J., Wu J., “Non-locality of reaction-diffusion equations induced by delay: Biological modeling and nonlinear dynamics”, J. Math. Sci., 124 (2004), 5119–5153 | DOI | MR

[8] Jianhong W., Theory and Applications of Partial Functional Differential Equations, Appl. Math. Sci., 119, Springer Verlag, New York, 1996 | MR | Zbl

[9] Cushing J. M., Integrodifferential Equations and Delay Models in Population Dynamics, Lect. Notes in Biomath., 20, Springer, Berlin–Heidelberg, 1977 | DOI | MR | Zbl

[10] Murray J. D., Mathematical Biology II: Spatial Models and Biomedical Applications, Interdisciplinary Appl. Math., 18, 3rd edition, Springer Verlag, New York, 2001 | MR

[11] Kolesov A. Yu., Kolesov Yu. S., “Relaksatsionnye kolebaniya v matematicheskikh modelyakh ekologii”, Tr. MIAN, 199, ed. Mischenko E. F., Nauka, M., 1993, 3–124

[12] Oster G., Guckenheimer J., “Bifurcation phenomena in population models”, The Hopf Bifurcation and Its Applications, Appl. Math. Sci., 19, eds. Marsden J. E., McCracken M. F., Springer, New York, 1976, 327–353 | DOI | MR

[13] Kaschenko S. A., “Usrednenie po prostranstvennoi peremennoi v nelineinykh parabolicheskikh sistemakh”, Tr. Moskovsk. matem. ob-va, 80, no. 1, 2019, 63–86 | Zbl