Voir la notice de l'article provenant de la source Math-Net.Ru
@article{IVM_2022_1_a5, author = {S. A. Kaschenko and D. O. Loginov}, title = {The influence of external environment resistance coefficient on population dynamics}, journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika}, pages = {65--73}, publisher = {mathdoc}, number = {1}, year = {2022}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/IVM_2022_1_a5/} }
TY - JOUR AU - S. A. Kaschenko AU - D. O. Loginov TI - The influence of external environment resistance coefficient on population dynamics JO - Izvestiâ vysših učebnyh zavedenij. Matematika PY - 2022 SP - 65 EP - 73 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/IVM_2022_1_a5/ LA - ru ID - IVM_2022_1_a5 ER -
S. A. Kaschenko; D. O. Loginov. The influence of external environment resistance coefficient on population dynamics. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 1 (2022), pp. 65-73. http://geodesic.mathdoc.fr/item/IVM_2022_1_a5/
[1] Bitsadze A. V., Kraevye zadachi dlya ellipticheskikh uravnenii vtorogo poryadka, Nauka, M., 1966 | MR
[2] Savateev E. G., “O zadache identifikatsii koeffitsienta parabolicheskogo uravneniya”, Sib. matem. zhurn., 36:1 (1995), 177–185 | MR | Zbl
[3] Wright E. M., “A non-linear difference-differential equation”, J. Reine und Angew. Math. (Crelles J.), 194 (1955), 66–87 | MR | Zbl
[4] Kashchenko S. A., “Asymptotics of the Solutions of the Generalized Hutchinson Equation”, Automatic Control and Computer Sci., 47:7 (2013), 470–494 | DOI
[5] Kaschenko S. A., Loginov D. O., “Otsenka oblasti globalnoi ustoichivosti sostoyaniya ravnovesiya logisticheskogo uravneniya s zapazdyvaniem”, Izv. vuzov. Matem., 2020, no. 9, 39–55 | Zbl
[6] Kuang Y., Delay Differential Equations: With Applications in Population Dynamics, Math. in Sci. and Engineering, 191, Academic Press, New York, 1993 | MR | Zbl
[7] Gourley S. A., So J., Wu J., “Non-locality of reaction-diffusion equations induced by delay: Biological modeling and nonlinear dynamics”, J. Math. Sci., 124 (2004), 5119–5153 | DOI | MR
[8] Jianhong W., Theory and Applications of Partial Functional Differential Equations, Appl. Math. Sci., 119, Springer Verlag, New York, 1996 | MR | Zbl
[9] Cushing J. M., Integrodifferential Equations and Delay Models in Population Dynamics, Lect. Notes in Biomath., 20, Springer, Berlin–Heidelberg, 1977 | DOI | MR | Zbl
[10] Murray J. D., Mathematical Biology II: Spatial Models and Biomedical Applications, Interdisciplinary Appl. Math., 18, 3rd edition, Springer Verlag, New York, 2001 | MR
[11] Kolesov A. Yu., Kolesov Yu. S., “Relaksatsionnye kolebaniya v matematicheskikh modelyakh ekologii”, Tr. MIAN, 199, ed. Mischenko E. F., Nauka, M., 1993, 3–124
[12] Oster G., Guckenheimer J., “Bifurcation phenomena in population models”, The Hopf Bifurcation and Its Applications, Appl. Math. Sci., 19, eds. Marsden J. E., McCracken M. F., Springer, New York, 1976, 327–353 | DOI | MR
[13] Kaschenko S. A., “Usrednenie po prostranstvennoi peremennoi v nelineinykh parabolicheskikh sistemakh”, Tr. Moskovsk. matem. ob-va, 80, no. 1, 2019, 63–86 | Zbl