Voir la notice de l'article provenant de la source Math-Net.Ru
@article{IVM_2022_1_a4, author = {A. N. Karapetyants and I. Yu. Smirnova}, title = {Characterization of weighted mixed norm spaces of analytic functions defined in terms of conditions on the {Fourier} coefficients}, journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika}, pages = {57--64}, publisher = {mathdoc}, number = {1}, year = {2022}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/IVM_2022_1_a4/} }
TY - JOUR AU - A. N. Karapetyants AU - I. Yu. Smirnova TI - Characterization of weighted mixed norm spaces of analytic functions defined in terms of conditions on the Fourier coefficients JO - Izvestiâ vysših učebnyh zavedenij. Matematika PY - 2022 SP - 57 EP - 64 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/IVM_2022_1_a4/ LA - ru ID - IVM_2022_1_a4 ER -
%0 Journal Article %A A. N. Karapetyants %A I. Yu. Smirnova %T Characterization of weighted mixed norm spaces of analytic functions defined in terms of conditions on the Fourier coefficients %J Izvestiâ vysših učebnyh zavedenij. Matematika %D 2022 %P 57-64 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/item/IVM_2022_1_a4/ %G ru %F IVM_2022_1_a4
A. N. Karapetyants; I. Yu. Smirnova. Characterization of weighted mixed norm spaces of analytic functions defined in terms of conditions on the Fourier coefficients. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 1 (2022), pp. 57-64. http://geodesic.mathdoc.fr/item/IVM_2022_1_a4/
[1] Bergman S., “Uber die kernfunctionen eines bereiches und verhalten am rande, I”, J. Reine Agnew. Math., 169 (1933), 1–42 | MR
[2] Dzhrbashyan M. M., “O kanonicheskom predstavlenii funktsii, meromorfnykh v edinichnom kruge”, Dokl. AN Armenii SSR, 3:1 (1945), 3–9 | MR
[3] Dzhrbashyan M. M., “O probleme predstavimosti analiticheskikh funktsii”, Soobsch. In-ta matem. i mekhan. AN Arm. SSR, 2 (1948), 3–40
[4] Djrbashian A. E., Shamoian F. A., Topics in the theory of $A^p_\alpha$ spaces, Teubner-Texte zur Math., 105, Leipzig, 1988 | MR
[5] Duren P., Schuster A., Bergman spaces, Math. Sur. and Monographs, 100, American Math. Soc., Providence, RI, 2004 | DOI | MR | Zbl
[6] Shamoyan F. A., Vesovye prostranstva analiticheskikh funktsii so smeshannoi normoi, RIO, BGU, Bryansk, 2014
[7] Zhu K., Operator theory in function spaces, Monographs and textbooks in Pure and Appl. Math., Marcel Dekker, New York, 1990 | MR | Zbl
[8] Zhu K., Spaces of holomorphic functions in the unit ball, Graduate texts in Math., Springer, New York, 2004 | MR
[9] Karapetyants A., Taskinen J., “Toeplitz operators with radial symbols on weighted holomorphic Orlicz space”, Operator Algebras, Toeplitz Operators and Related Topics, Operator Theory: Advances and Appl., 279, eds. Bauer W. et al., 2020 | MR
[10] Karapetyants A. N., Samko S. G., “On Grand and Small Bergman Spaces”, Math. Notes, 104:3 (2018), 439–446 | MR | Zbl
[11] Karapetyants A., Rafeiro H., Samko S., “Boundedness of the Bergman projection and some properties of Bergman type spaces”, Complex Anal. and Operator Theory, 2018, 1–15 | MR
[12] Karapetyants A., Samko S., “On boundedness of Bergman projection operators in Banach spaces of holomorphic functions in half plane and harmonic functions in half space”, J. Math. Sci., 226:4 (2017), 344–354 | DOI | MR | Zbl
[13] Karapetyants A. N., Samko S. G., “On mixed norm Bergman–Orlicz–Morrey spaces”, Georgian Math. J., 25:2 (2018), 271–282 | DOI | MR | Zbl
[14] Karapetyants A., Samko S., “Mixed norm spaces of analytic functions as spaces of generalized fractional derivatives of functions in Hardy type spaces”, Fract. Calc. Appl. Anal., 2017, no. 5, 1106–1130 | DOI | MR | Zbl
[15] Karapetyants A., Samko S., “Mixed norm Bergman–Morrey type spaces on the unit disc”, Math. Notes, 100:1 (2016), 38–48 | DOI | MR | Zbl
[16] Karapetyants A., Samko S., “Mixed norm variable exponent Bergman space on the unit disc”, Complex Variables and Elliptic Equat., 61:8 (2016), 1090–1106 | DOI | MR | Zbl
[17] Karapetyants A., Smirnova I., “Weighted holomorphic mixed norm spaces in the unit disc defined in terms of Fourier coefficients”, Complex Variables and Elliptic Equat., 2021 | DOI
[18] Vasilevskii N. L., Grudskii S. M., Karapetyants A. N., “Dinamika svoistv teplitsevykh operatorov na vesovykh prostranstvakh Bergmana”, Sib. elektron. matem. izv., 3 (2006), 362–383 | MR | Zbl
[19] Grudsky S. M., Karapetyants A. N., Vasilevski N. L., “Toeplitz operators on the unit ball in $\mathbb{C}^n$ with radial symbols”, J. Operator Theory, 49:2 (2003), 325–346 | MR | Zbl
[20] Grudsky S. M., Karapetyants A. N., Vasilevski N. L., “Dynamics of properties of Toeplitz operators with radial symbols”, Integral Equat. Operator Theory, 50:2 (2004), 217–253 | DOI | MR | Zbl
[21] Grudsky S. M., Karapetyants A. N., Vasilevski N. L., “Dynamics of properties of Toeplitz operators on the upper half plane: hyperbolic case”, Bol. Soc. Mat. Mexicana (3), 10:1 (2004), 119–138 | MR | Zbl
[22] Grudsky S. M., Karapetyants A. N., Vasilevski N. L., “Dynamics of properties of Toeplitz operators on the upper half plane: parabolic case”, J. Operator Theory, 52:1 (2004), 185–214 | MR | Zbl
[23] Gradshtein I. S., Ryzhik I. M., Tablitsy integralov, ryadov i proizvedenii, 5-e izd., Fizmatgiz, M., 1971 | MR