Some remarks and results on $h$-almost Ricci solitons
Izvestiâ vysših učebnyh zavedenij. Matematika, no. 12 (2022), pp. 79-83
Voir la notice de l'article provenant de la source Math-Net.Ru
In this paper, we will focus our attention on the structure of $h$-almost Ricci solitons. We obtain certain conditions that if $(M,g)$ be a complete $h$-almost Ricci soliton Riemannian manifold then the fundamental group $\pi_{1}(M)$ of M will finite. Also, we prove that a complete shrinking h-almost Ricci soliton $(M,g,X,h,\lambda)$ is compact if and only if $\| X \|$ is bounded on $(M,g)$.
Keywords:
Riemannian geometry, fundamental group, $h$-Almost Ricci soliton.
@article{IVM_2022_12_a5,
author = {Hamed Faraji and Shahroud Azami},
title = {Some remarks and results on $h$-almost {Ricci} solitons},
journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika},
pages = {79--83},
publisher = {mathdoc},
number = {12},
year = {2022},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/IVM_2022_12_a5/}
}
Hamed Faraji; Shahroud Azami. Some remarks and results on $h$-almost Ricci solitons. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 12 (2022), pp. 79-83. http://geodesic.mathdoc.fr/item/IVM_2022_12_a5/