Some remarks and results on $h$-almost Ricci solitons
Izvestiâ vysših učebnyh zavedenij. Matematika, no. 12 (2022), pp. 79-83.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper, we will focus our attention on the structure of $h$-almost Ricci solitons. We obtain certain conditions that if $(M,g)$ be a complete $h$-almost Ricci soliton Riemannian manifold then the fundamental group $\pi_{1}(M)$ of M will finite. Also, we prove that a complete shrinking h-almost Ricci soliton $(M,g,X,h,\lambda)$ is compact if and only if $\| X \|$ is bounded on $(M,g)$.
Keywords: Riemannian geometry, fundamental group, $h$-Almost Ricci soliton.
@article{IVM_2022_12_a5,
     author = {Hamed Faraji and Shahroud Azami},
     title = {Some remarks and results on $h$-almost {Ricci} solitons},
     journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika},
     pages = {79--83},
     publisher = {mathdoc},
     number = {12},
     year = {2022},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/IVM_2022_12_a5/}
}
TY  - JOUR
AU  - Hamed Faraji
AU  - Shahroud Azami
TI  - Some remarks and results on $h$-almost Ricci solitons
JO  - Izvestiâ vysših učebnyh zavedenij. Matematika
PY  - 2022
SP  - 79
EP  - 83
IS  - 12
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IVM_2022_12_a5/
LA  - ru
ID  - IVM_2022_12_a5
ER  - 
%0 Journal Article
%A Hamed Faraji
%A Shahroud Azami
%T Some remarks and results on $h$-almost Ricci solitons
%J Izvestiâ vysših učebnyh zavedenij. Matematika
%D 2022
%P 79-83
%N 12
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IVM_2022_12_a5/
%G ru
%F IVM_2022_12_a5
Hamed Faraji; Shahroud Azami. Some remarks and results on $h$-almost Ricci solitons. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 12 (2022), pp. 79-83. http://geodesic.mathdoc.fr/item/IVM_2022_12_a5/

[1] Hamilton R.S., “Three-manifolds with positive Ricci curvature”, J. Diff. Geom., 17:2 (1982), 255–306

[2] Hamilton R.S., “The Ricci flow on surfaces”, Contemp. Math., 71, 1988, 237–261

[3] Cao H.D., “Recent progress on Ricci soliton”, Recent Advances in Geometric Analysis, Adv. Lect. Math. (ALM), 11, Int. Press, Somerville, MA, 2010, 1–38

[4] Gomes J.N., Wang Q., Xia C., “On the $h$-almost Ricci soliton”, J. Geom. Phys., 114 (2017), 216–222

[5] Pigola S., Rigoli M., Rimoldi M., Setti A.G., “Ricci almost solitons”, Ann. Sc. Norm. Super. Pisa Cl. Sci., 10:5 (2011), 757–799

[6] Faraji H., Azami Sh., Fasihi-Ramandi Gh., “$h$-Almost Ricci solitons with concurrent potential fields”, AIMS Math., 5:5 (2020), 4220–4228

[7] Ghahremani-Gol H., “Some results on $h$-almost Ricci solitons”, J. Geom. Phys., 137 (2019), 212–216

[8] Ambrose W., “A Theorem of Myers”, Duke Math. J., 24 (1957), 345–348

[9] Zhang Z., “On the finiteness of the fundamental group of a compact shrinking Ricci soliton”, Colloq. Math., 107:2 (2007), 297–299

[10] Derdzinski A., “A Myers-type theorem and compact Ricci solitons”, Proc. Amer. Math. Soc., 134:12 (2006), 3645–3648

[11] Deshmukh Sh., Al-Sodais H., “A note on almost Ricci solitons”, Anal. Math. Phys., 10:4 (2020), 76

[12] Hamilton R.S., “The formation of singularities in the Ricci flow”, Surveys in Differential Geometry (Cambridge, MA), v. 2, International Press, Combridge, MA, 1993, 7–136

[13] Sesum N., “Convergence of the Ricci flow toward a soliton”, Comm. Anal. Geom., 14:2 (2006), 283–343

[14] Perelman G., The entropy formula for the Ricci flow and its geometric applications, 2002, arXiv: math.DG/02111591 [math. DG]