Mots-clés : uniform convergence, sufficient conditions.
@article{IVM_2022_11_a5,
author = {K. B. Sabitov},
title = {On the uniform convergence of the expansion of a function in {Fourier{\textendash}Bessel} range},
journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika},
pages = {89--96},
year = {2022},
number = {11},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/IVM_2022_11_a5/}
}
K. B. Sabitov. On the uniform convergence of the expansion of a function in Fourier–Bessel range. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 11 (2022), pp. 89-96. http://geodesic.mathdoc.fr/item/IVM_2022_11_a5/
[1] Vatson Dzh.N., Teoriya besselevykh funktsii, v. I, In. lit., M., 1949
[2] Vladimirov V. S., Zharinov V.V, Uravneniya matematicheskoi fiziki, 2-e izd., Fizmatlit, M., 2008 | MR
[3] Sabitov K. B., Funktsionalnye, differentsialnye i integralnye uravneniya, Vyssh. shk., M., 2005
[4] Sabitov K. B., Vagapova E. V., “Zadacha Dirikhle dlya uravneniya smeshannogo tipa s dvumya liniyami vyrozhdeniya v pryamougolnoi oblasti”, Differents. uravneniya, 49:1 (2013), 68–78 | MR
[5] Sabitov K. B., Safina R. M., “Pervaya granichnaya zadacha dlya uravneniya smeshannogo tipa s singulyarnym koeffitsientom”, Izv. RAN, Ser. matem., 82:2 (2018), 79–112 | MR
[6] Sabitov K. B., Zaitseva N. V., “Initial–boundary value problem for hyperbolic equation with singular coefficient and integral condition of the second kind”, Lobachevskii J. Math., 39:9 (2018), 1419–1427 | DOI | MR