On the uniform convergence of the expansion of a function in Fourier--Bessel range
Izvestiâ vysših učebnyh zavedenij. Matematika, no. 11 (2022), pp. 89-96.

Voir la notice de l'article provenant de la source Math-Net.Ru

Watson's monograph on the theory of Bessel functions noted the unsolved problem of expanding a function in a Fourier–Bessel series when the order of these functions changes from minus one to minus one second. In this paper, we propose sufficient conditions with respect to the function for which the uniform convergence of the Fourier–Bessel series to a given function for the indicated index values.
Keywords: Fourier–Bessel series
Mots-clés : uniform convergence, sufficient conditions.
@article{IVM_2022_11_a5,
     author = {K. B. Sabitov},
     title = {On the uniform convergence of the expansion of a function in {Fourier--Bessel} range},
     journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika},
     pages = {89--96},
     publisher = {mathdoc},
     number = {11},
     year = {2022},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/IVM_2022_11_a5/}
}
TY  - JOUR
AU  - K. B. Sabitov
TI  - On the uniform convergence of the expansion of a function in Fourier--Bessel range
JO  - Izvestiâ vysših učebnyh zavedenij. Matematika
PY  - 2022
SP  - 89
EP  - 96
IS  - 11
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IVM_2022_11_a5/
LA  - ru
ID  - IVM_2022_11_a5
ER  - 
%0 Journal Article
%A K. B. Sabitov
%T On the uniform convergence of the expansion of a function in Fourier--Bessel range
%J Izvestiâ vysših učebnyh zavedenij. Matematika
%D 2022
%P 89-96
%N 11
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IVM_2022_11_a5/
%G ru
%F IVM_2022_11_a5
K. B. Sabitov. On the uniform convergence of the expansion of a function in Fourier--Bessel range. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 11 (2022), pp. 89-96. http://geodesic.mathdoc.fr/item/IVM_2022_11_a5/

[1] Vatson Dzh.N., Teoriya besselevykh funktsii, v. I, In. lit., M., 1949

[2] Vladimirov V. S., Zharinov V.V, Uravneniya matematicheskoi fiziki, 2-e izd., Fizmatlit, M., 2008 | MR

[3] Sabitov K. B., Funktsionalnye, differentsialnye i integralnye uravneniya, Vyssh. shk., M., 2005

[4] Sabitov K. B., Vagapova E. V., “Zadacha Dirikhle dlya uravneniya smeshannogo tipa s dvumya liniyami vyrozhdeniya v pryamougolnoi oblasti”, Differents. uravneniya, 49:1 (2013), 68–78 | MR

[5] Sabitov K. B., Safina R. M., “Pervaya granichnaya zadacha dlya uravneniya smeshannogo tipa s singulyarnym koeffitsientom”, Izv. RAN, Ser. matem., 82:2 (2018), 79–112 | MR

[6] Sabitov K. B., Zaitseva N. V., “Initial–boundary value problem for hyperbolic equation with singular coefficient and integral condition of the second kind”, Lobachevskii J. Math., 39:9 (2018), 1419–1427 | DOI | MR