Forced and parametric vibrations of a composite plate caused by its resonant bending vibrations
Izvestiâ vysših učebnyh zavedenij. Matematika, no. 10 (2022), pp. 86-94.

Voir la notice de l'article provenant de la source Math-Net.Ru

For a rod-strip based on the shear model of S.P. Timoshenko of the first order of accuracy, taking into account the transverse shear and compression in the thickness direction, the two-dimensional equations of the plane problem of the theory of elasticity, compiled in a simplified geometrically nonlinear quadratic approximation, are reduced to one-dimensional geometrically nonlinear equations of equilibrium and motion. Under static loading, the derived equations make it possible to reveal known flexural-shear buckling modes under compression conditions and purely transverse-shear buckling modes under flexural conditions. When considering stationary low-frequency dynamic processes of deformation, the derived equations in the linearized approximation are divided into two systems of equations, of which linear equations describe low-frequency flexural-shear vibrations, and linearized equations describe forced and parametric longitudinal-transverse (“breathing”) vibrations caused by flexural-shear vibrations.
Keywords: forced vibrations, parametric vibrations, Timoshenko model, geometrically nonlinear equations of motion, flexural-shear vibrations, forced breathing vibrations.
Mots-clés : composite plate
@article{IVM_2022_10_a8,
     author = {V. N. Paimushin and M. V. Makarov and S. F. Chumakova},
     title = {Forced and parametric vibrations of a composite plate caused by its resonant bending vibrations},
     journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika},
     pages = {86--94},
     publisher = {mathdoc},
     number = {10},
     year = {2022},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/IVM_2022_10_a8/}
}
TY  - JOUR
AU  - V. N. Paimushin
AU  - M. V. Makarov
AU  - S. F. Chumakova
TI  - Forced and parametric vibrations of a composite plate caused by its resonant bending vibrations
JO  - Izvestiâ vysših učebnyh zavedenij. Matematika
PY  - 2022
SP  - 86
EP  - 94
IS  - 10
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IVM_2022_10_a8/
LA  - ru
ID  - IVM_2022_10_a8
ER  - 
%0 Journal Article
%A V. N. Paimushin
%A M. V. Makarov
%A S. F. Chumakova
%T Forced and parametric vibrations of a composite plate caused by its resonant bending vibrations
%J Izvestiâ vysših učebnyh zavedenij. Matematika
%D 2022
%P 86-94
%N 10
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IVM_2022_10_a8/
%G ru
%F IVM_2022_10_a8
V. N. Paimushin; M. V. Makarov; S. F. Chumakova. Forced and parametric vibrations of a composite plate caused by its resonant bending vibrations. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 10 (2022), pp. 86-94. http://geodesic.mathdoc.fr/item/IVM_2022_10_a8/

[1] Neves A. M.A., Ferreira A. J.M., Carrera E., Cinefra M., Roque C. M.C., Jorge R. M.N., Soares C. M.M., “Static, free vibration and buckling analysis of isotropic and sandwich functionally graded plates using a quasi-$3$D higher-order shear deformation theory and a meshless technique”, Composites: P. B, 44 (2013), 657–674 | DOI | MR

[2] Liao-Liang Ke, Jie Yang, Sritawat Kitipornchai, “An analytical study on the nonlinear vibration of functionally graded beams”, Meccanica, 45 (2010), 743–752 | DOI | MR | Zbl

[3] Affane B., Egorov A. G., “Asimtoticheskii analiz geometricheski nelineinykh kolebanii dlinnykh plastin”, Uchen. zap. Kazan. un-ta. Ser. Fiz.-matem. nauki, 162, no. 4, 2020, 396–410 | MR

[4] Egorov A. G., Affane B., “Instability regions in flexural-torsional vibrations of plates”, Lobachevskii J. Math., 41:7 (2020), 1167–1174 | DOI | MR | Zbl

[5] Paimushin V. N., Kholmogorov S. A., Makarov M. V., Tarlakovskii D. V., Lukaszewicz A., “Mechanics of fiber composites: Forms of loss of stability and fracture of test specimens resulting from three-point bending tests”, ZAMM Zeitschrift fur Angewandte Math. und Mech., 99:1 (2019), e201800063 | DOI | MR

[6] Paimushin V. N., Shalashilin V. I., “O sootnosheniyakh teorii deformatsii v kvadratichnom priblizhenii i problemy postroeniya utochnennykh variantov geometricheski nelineinoi teorii sloistykh elementov konstruktsii”, PMM, 69:5 (2005), 861–881 | Zbl