On a class Noether theory of two-dimensonal Singular integral equations of the Michlin--Calderon--Zygmund over a bounded domain
Izvestiâ vysših učebnyh zavedenij. Matematika, no. 10 (2022), pp. 33-41
Voir la notice de l'article provenant de la source Math-Net.Ru
In this paper established effective necessary and sufficient conditions for the Noetherian property of two-dimensional singular integral equations of the Mikhlin–Calderon–Zygmund type in Lebesgue spaces with a weight, and given a formula for calculating the index.
Keywords:
singular integral operators, symbol of operator, operator noetherian, operator's index.
@article{IVM_2022_10_a3,
author = {G. Dzhangibekov and G. M. Qoziev and B. Yogibekov},
title = {On a class {Noether} theory of two-dimensonal {Singular} integral equations of the {Michlin--Calderon--Zygmund} over a bounded domain},
journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika},
pages = {33--41},
publisher = {mathdoc},
number = {10},
year = {2022},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/IVM_2022_10_a3/}
}
TY - JOUR AU - G. Dzhangibekov AU - G. M. Qoziev AU - B. Yogibekov TI - On a class Noether theory of two-dimensonal Singular integral equations of the Michlin--Calderon--Zygmund over a bounded domain JO - Izvestiâ vysših učebnyh zavedenij. Matematika PY - 2022 SP - 33 EP - 41 IS - 10 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/IVM_2022_10_a3/ LA - ru ID - IVM_2022_10_a3 ER -
%0 Journal Article %A G. Dzhangibekov %A G. M. Qoziev %A B. Yogibekov %T On a class Noether theory of two-dimensonal Singular integral equations of the Michlin--Calderon--Zygmund over a bounded domain %J Izvestiâ vysših učebnyh zavedenij. Matematika %D 2022 %P 33-41 %N 10 %I mathdoc %U http://geodesic.mathdoc.fr/item/IVM_2022_10_a3/ %G ru %F IVM_2022_10_a3
G. Dzhangibekov; G. M. Qoziev; B. Yogibekov. On a class Noether theory of two-dimensonal Singular integral equations of the Michlin--Calderon--Zygmund over a bounded domain. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 10 (2022), pp. 33-41. http://geodesic.mathdoc.fr/item/IVM_2022_10_a3/