On the number of primality witnesses of composite integers
Izvestiâ vysših učebnyh zavedenij. Matematika, no. 9 (2021), pp. 86-91.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper we deduce asymptotic upper and lower bounds for an average probability of error in the Miller–Rabin primality test.
Keywords: The Miller–Rabin probabilistic primality test, error probability.
@article{IVM_2021_9_a8,
     author = {B. G. Mubarakov},
     title = {On the number of primality witnesses of composite integers},
     journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika},
     pages = {86--91},
     publisher = {mathdoc},
     number = {9},
     year = {2021},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/IVM_2021_9_a8/}
}
TY  - JOUR
AU  - B. G. Mubarakov
TI  - On the number of primality witnesses of composite integers
JO  - Izvestiâ vysših učebnyh zavedenij. Matematika
PY  - 2021
SP  - 86
EP  - 91
IS  - 9
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IVM_2021_9_a8/
LA  - ru
ID  - IVM_2021_9_a8
ER  - 
%0 Journal Article
%A B. G. Mubarakov
%T On the number of primality witnesses of composite integers
%J Izvestiâ vysših učebnyh zavedenij. Matematika
%D 2021
%P 86-91
%N 9
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IVM_2021_9_a8/
%G ru
%F IVM_2021_9_a8
B. G. Mubarakov. On the number of primality witnesses of composite integers. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 9 (2021), pp. 86-91. http://geodesic.mathdoc.fr/item/IVM_2021_9_a8/

[1] Miller G., “Riemann's hypothesis and tests for primality”, J. Comput. and Syst. Sci., 13 (1976), 300–317 | DOI | Zbl

[2] Rabin M. O., “Probabilistic algorithm for testing primality”, J. Number Theor., 12:1 (1980), 128–138 | DOI | Zbl

[3] Monier L., “Evaluation and comparision of two efficient probabilistic primality testing algorithms”, Theor. Comput. Sci., 12:1 (1980), 97–108 | DOI | Zbl

[4] Ishmukhametov S., Rubtsova R., Savelyev N., “The Error Probability of the Miller–Rabin Primality Test”, Lobachevskii J. of Math., 39:7 (2018), 1010–1015 | DOI | Zbl