On the number of primality witnesses of composite integers
Izvestiâ vysših učebnyh zavedenij. Matematika, no. 9 (2021), pp. 86-91
Cet article a éte moissonné depuis la source Math-Net.Ru
In this paper we deduce asymptotic upper and lower bounds for an average probability of error in the Miller–Rabin primality test.
Keywords:
The Miller–Rabin probabilistic primality test, error probability.
@article{IVM_2021_9_a8,
author = {B. G. Mubarakov},
title = {On the number of primality witnesses of composite integers},
journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika},
pages = {86--91},
year = {2021},
number = {9},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/IVM_2021_9_a8/}
}
B. G. Mubarakov. On the number of primality witnesses of composite integers. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 9 (2021), pp. 86-91. http://geodesic.mathdoc.fr/item/IVM_2021_9_a8/
[1] Miller G., “Riemann's hypothesis and tests for primality”, J. Comput. and Syst. Sci., 13 (1976), 300–317 | DOI | Zbl
[2] Rabin M. O., “Probabilistic algorithm for testing primality”, J. Number Theor., 12:1 (1980), 128–138 | DOI | Zbl
[3] Monier L., “Evaluation and comparision of two efficient probabilistic primality testing algorithms”, Theor. Comput. Sci., 12:1 (1980), 97–108 | DOI | Zbl
[4] Ishmukhametov S., Rubtsova R., Savelyev N., “The Error Probability of the Miller–Rabin Primality Test”, Lobachevskii J. of Math., 39:7 (2018), 1010–1015 | DOI | Zbl