Combinatorial structure of a semigroup of bistochastic matrices
Izvestiâ vysših učebnyh zavedenij. Matematika, no. 9 (2021), pp. 80-85
Cet article a éte moissonné depuis la source Math-Net.Ru
The Frobenius form of an irreducible bistochastic matrix is clarified. A generalization of the Frobenius form for irreducible semigroups of bistochastic matrices is described.
Mots-clés :
nonnegative matrix
Keywords: semigroup, Frobenius theorem.
Keywords: semigroup, Frobenius theorem.
@article{IVM_2021_9_a7,
author = {Yu. A. Al'pin and V. G. Tregubov},
title = {Combinatorial structure of a semigroup of bistochastic matrices},
journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika},
pages = {80--85},
year = {2021},
number = {9},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/IVM_2021_9_a7/}
}
Yu. A. Al'pin; V. G. Tregubov. Combinatorial structure of a semigroup of bistochastic matrices. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 9 (2021), pp. 80-85. http://geodesic.mathdoc.fr/item/IVM_2021_9_a7/
[1] Gantmakher F.R., Teoriya matrits, Fizmatlit, M., 2004
[2] Alpin Yu.A., Neotritsatelnye matritsy, Kazansk. fed. un-t, Kazan, 2015
[3] Paparella P., “Frobenius normal forms of doubly stochastic matrices”, Spec. Matrices, 7:1 (2019), 213–217 | DOI | Zbl
[4] Protasov V.Yu., Voynov A. S., “Sets of nonnegative matrices without positive products”, Linear Algebra Appl., 437:3 (2012), 749–765 | DOI | Zbl
[5] Alpin Yu. A., Alpina V. S., “Kombinatornye svoistva tselykh polugrupp neotritsatelnykh matrits”, Zap. nauchn. sem. POMI, 428, 2014, 13–31
[6] Sachkov V. N., Tarakanov V. E., Kombinatorika neotritsatelnykh matrits, Izd-vo TVP, M., 2000