Guiding functional families, Lyapunov vector functions, and the existence of Poisson bounded solutions
Izvestiâ vysših učebnyh zavedenij. Matematika, no. 9 (2021), pp. 31-39 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

On the basis of the method of guiding functional families and the method of Lyapunov vector functions we obtain sufficient condition for the existence of Poisson bounded solutions, as well as a sufficient condition for the existence of partially Poisson bounded solutions of systems of differential equations.
Keywords: vector Lyapunov function, rotation of the vector field, guiding function, guiding function, guiding functional family, Poisson boundedness of solution, partial Poisson boundedness of solution.
@article{IVM_2021_9_a3,
     author = {K. S. Lapin},
     title = {Guiding functional families, {Lyapunov} vector functions, and the existence of {Poisson} bounded solutions},
     journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika},
     pages = {31--39},
     year = {2021},
     number = {9},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/IVM_2021_9_a3/}
}
TY  - JOUR
AU  - K. S. Lapin
TI  - Guiding functional families, Lyapunov vector functions, and the existence of Poisson bounded solutions
JO  - Izvestiâ vysših učebnyh zavedenij. Matematika
PY  - 2021
SP  - 31
EP  - 39
IS  - 9
UR  - http://geodesic.mathdoc.fr/item/IVM_2021_9_a3/
LA  - ru
ID  - IVM_2021_9_a3
ER  - 
%0 Journal Article
%A K. S. Lapin
%T Guiding functional families, Lyapunov vector functions, and the existence of Poisson bounded solutions
%J Izvestiâ vysših učebnyh zavedenij. Matematika
%D 2021
%P 31-39
%N 9
%U http://geodesic.mathdoc.fr/item/IVM_2021_9_a3/
%G ru
%F IVM_2021_9_a3
K. S. Lapin. Guiding functional families, Lyapunov vector functions, and the existence of Poisson bounded solutions. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 9 (2021), pp. 31-39. http://geodesic.mathdoc.fr/item/IVM_2021_9_a3/

[1] Matrosov V.M., Metod vektornykh funktsii Lyapunova: analiz dinamicheskikh svoistv nelineinykh sistem, Fizmatlit, M., 2001

[2] Lyapunov A.M., Obschaya zadacha ob ustoichivosti dvizheniya, Izdanie Kharkovsk. matem. o-va, Kharkov, 1892

[3] Krasnoselskii M.A., Operator sdviga po traektoriyam differentsialnykh uravnenii, Nauka, M., 1966

[4] Zvyagin V.G., Kornev S.V., Metod napravlyayuschikh funktsii i ego modifikatsii, LENAND, M., 2018

[5] Lapin K.S., “Ravnomernaya ogranichennost po Puassonu reshenii sistem differentsialnykh uravnenii i vektor-funktsii Lyapunova”, Differents. uravneniya, 54:1 (2018), 40–50 | Zbl

[6] Lapin K.S., “Ogranichennost v predele po Puassonu reshenii sistem differentsialnykh uravnenii i funktsii Lyapunova”, Matem. zametki, 103:2 (2018), 223–235 | Zbl

[7] Lapin K.S., “Vysshie proizvodnye funktsii Lyapunova i ogranichennost v predele po Puassonu reshenii sistem differentsialnykh uravnenii”, Sib. matem. zhurn., 59:6 (2018), 1383–1388 | Zbl

[8] Yoshizawa T., “Liapunovs function and boundedness of solutions”, Funkcial. Ekvac., 2 (1959), 95–142 | Zbl

[9] Rumyantsev V. V., Oziraner A. S., Ustoichivost i stabilizatsiya dvizheniya po otnosheniyu k chasti peremennykh, Nauka, M., 1987

[10] Dold A., Lektsii po algebraicheskoi topologii, Mir, M., 1976

[11] Kartashev A. P., Rozhdestvenskii B. L., Obyknovennye differentsialnye uravneniya i osnovy variatsionnogo ischisleniya, Nauka, M., 1980