Deformations of Lie algebras of type ${D}_{n}$ and their factoralgebras over the field of characteristic~$2$
Izvestiâ vysših učebnyh zavedenij. Matematika, no. 8 (2021), pp. 86-90.

Voir la notice de l'article provenant de la source Math-Net.Ru

The study of global deformations of Lie algebras is related to the problem of classification of simple Lie algebras over fields of small characteristic. The classification of finite-dimensional simple Lie algebras is complete over algebraically closed fields of characteristic $p>3$. Over the fields of characteristic $2$, a large number of examples of Lie algebras are constructed that do not fit into previously known schemes. Description of the deformation of classical Lie algebras gives new examples of simple Lie algebras, and allows to describe known examples as deformations of classical Lie algebras. This paper describes the global deformations of Lie algebras of the type $D_l$ for $l>3$ and the factor of the algebra at the center $\overline{D}_l$ over the field of characteristic $2$.
Keywords: Lie algebra, cohomology, deformation of Lie algebra.
@article{IVM_2021_8_a9,
     author = {N. G. Chebochko},
     title = {Deformations of {Lie} algebras of type ${D}_{n}$ and their factoralgebras over the field of characteristic~$2$},
     journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika},
     pages = {86--90},
     publisher = {mathdoc},
     number = {8},
     year = {2021},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/IVM_2021_8_a9/}
}
TY  - JOUR
AU  - N. G. Chebochko
TI  - Deformations of Lie algebras of type ${D}_{n}$ and their factoralgebras over the field of characteristic~$2$
JO  - Izvestiâ vysših učebnyh zavedenij. Matematika
PY  - 2021
SP  - 86
EP  - 90
IS  - 8
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IVM_2021_8_a9/
LA  - ru
ID  - IVM_2021_8_a9
ER  - 
%0 Journal Article
%A N. G. Chebochko
%T Deformations of Lie algebras of type ${D}_{n}$ and their factoralgebras over the field of characteristic~$2$
%J Izvestiâ vysših učebnyh zavedenij. Matematika
%D 2021
%P 86-90
%N 8
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IVM_2021_8_a9/
%G ru
%F IVM_2021_8_a9
N. G. Chebochko. Deformations of Lie algebras of type ${D}_{n}$ and their factoralgebras over the field of characteristic~$2$. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 8 (2021), pp. 86-90. http://geodesic.mathdoc.fr/item/IVM_2021_8_a9/

[1] Gerstenhaber M., “On the deforormation of rings and algebras”, Ann. of Math., 79:1 (1964), 59–103 | DOI | MR | Zbl

[2] Chebochko N. G., “Deformatsii klassicheskikh algebr Li s odnorodnoi sistemoi kornei v kharakteristike 2. I”, Matem. sb., 196:9 (2005), 125–156 | MR | Zbl

[3] Chebochko N. G., Kuznetsov M. I., “Integrable cocycles and global deformations of Lie algebra of type $G_2$ in characteristic $2$”, Communications in Algebra, 45:7 (2017), 2969–2977 | DOI | MR | Zbl

[4] Kuznetsov M., Chebochko N., “Global Deformations of a Lie Algebra of Type $\bar{A_5}$ in Characteristic $2$”, Lobachevskii J. Math., 41:2 (2020), 238–242 | DOI | MR | Zbl

[5] Burbaki N., Gruppy i algebry Li. Gl. IV–VI, Mir, M., 1972 | MR

[6] Chebochko N. G., “Deformatsii klassicheskikh algebr tipa $D_l$ nad polem kharakteristiki $2$”, Tr. NGTU im. R.E. Alekseeva, 1 (2011), 337–341

[7] Frohardt D. E., Griess R. L., “Automorphisms of modular Lie algebras”, Nova J. Algebra Geom., 1:4 (1992), 339–345 | MR | Zbl