On the solvability of a periodic problem for nonlinear ordinary differential equation of the second order
Izvestiâ vysših učebnyh zavedenij. Matematika, no. 8 (2021), pp. 56-65.

Voir la notice de l'article provenant de la source Math-Net.Ru

The article deals with a periodic problem for a nonlinear ordinary differential equation of the second order with the main positively homogeneous part selected. The paper uses the research scheme previously implemented by the authors in the study of the third two-point boundary value problem for a nonlinear ordinary differential equation of the second order. According to the research scheme, first in terms of the properties of the main positively homogeneous part, the conditions for a priori estimation of periodic solutions are found. And then in terms of a priori estimation theorems on the solvability of the periodic problem are formulated and proved using methods for calculating the rotation of vector fields. The results obtained can subsequently be generalized for systems of nonlinear ordinary differential equations of the second order.
Keywords: periodic problem, positive homogeneous function, solvability of a periodic problem, rotation of a vector fields.
Mots-clés : a priori estimation
@article{IVM_2021_8_a5,
     author = {A. N. Naimov and M. M. Kobilzoda},
     title = {On the solvability of a periodic problem for nonlinear ordinary differential equation of the second order},
     journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika},
     pages = {56--65},
     publisher = {mathdoc},
     number = {8},
     year = {2021},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/IVM_2021_8_a5/}
}
TY  - JOUR
AU  - A. N. Naimov
AU  - M. M. Kobilzoda
TI  - On the solvability of a periodic problem for nonlinear ordinary differential equation of the second order
JO  - Izvestiâ vysših učebnyh zavedenij. Matematika
PY  - 2021
SP  - 56
EP  - 65
IS  - 8
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IVM_2021_8_a5/
LA  - ru
ID  - IVM_2021_8_a5
ER  - 
%0 Journal Article
%A A. N. Naimov
%A M. M. Kobilzoda
%T On the solvability of a periodic problem for nonlinear ordinary differential equation of the second order
%J Izvestiâ vysših učebnyh zavedenij. Matematika
%D 2021
%P 56-65
%N 8
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IVM_2021_8_a5/
%G ru
%F IVM_2021_8_a5
A. N. Naimov; M. M. Kobilzoda. On the solvability of a periodic problem for nonlinear ordinary differential equation of the second order. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 8 (2021), pp. 56-65. http://geodesic.mathdoc.fr/item/IVM_2021_8_a5/

[1] Mukhamadiev E., Naimov A. N., “K teorii dvukhtochechnykh kraevykh zadach dlya differentsialnykh uravnenii vtorogo poryadka”, Differents. uravneniya, 35:10 (1999), 1372–1381 | MR | Zbl

[2] Mukhamadiev E., “O periodicheskikh i ogranichennykh resheniyakh sistemy dvukh nelineinykh differentsialnykh uravnenii”, DAN Tadzh. SSR, 19:3 (1976), 3–5 | Zbl

[3] Abduvaitov Kh., O nekotorykh prilozheniyakh topologicheskikh metodov k teorii periodicheskikh i ogranichennykh reshenii nelineinykh differentsialnykh uravnenii, Diss. na soisk. uchenoi stepeni kand. fiz.-matem. nauk, Dushanbe, 1980, 72–94

[4] Mukhamadiev E., “K teorii periodicheskikh reshenii sistem obyknovennykh differentsialnykh uravnenii”, DAN SSSR, 194:3 (1970), 510–513 | Zbl

[5] Krasnoselskii M. A., Zabreiko P. P., Geometricheskie metody nelineinogo analiza, Nauka, M., 1975

[6] Mukhamadiev E., “Formula dlya vychisleniya vrascheniya odnogo klassa vektornykh polei”, DAN Tadzh. SSR, 20:5 (1977), 11–14 | MR | Zbl

[7] Naimov A. N., Khakimov R. I., “O razreshimosti odnoi nelineinoi periodicheskoi zadachi”, DAN Respubl. Tadzhikistan, 46:3–4 (2003), 22–27

[8] Zvyagin V. G., Kornev S. V., “Metod napravlyayuschikh funktsii v zadache o suschestvovanii periodicheskikh reshenii differentsialnykh uravnenii”, Sovremen. matem. Fundament. napravleniya, 58, 2015, 59–81

[9] Perov A. I., Kaverina V. K., “Ob odnoi zadache Vladimira Ivanovicha Zubova”, Differents. uravneniya, 55:2 (2019), 269–272 | MR | Zbl

[10] Trenogin V. A., Funktsionalnyi analiz, Nauka, M., 1980