Nondegenerate canonical solutions of one system of functional equations
Izvestiâ vysših učebnyh zavedenij. Matematika, no. 8 (2021), pp. 46-55.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper, we solve a special system of functional equations arising in the problem of embedding an additive two-metric phenomenologically symmetric geometry of two sets of rank (2,2) into a multiplicative two-metric phenomenologically symmetric geometry of two sets of rank (3,2). We are looking for non-degenerate solutions of this system, which are very difficult to determine in general terms. However, the problem of determining the set of its fundamental solutions associated with a finite number of Jordan forms of nonzero second-order matrices turned out to be much simpler and more meaningful in the mathematical sense. The methods developed by the authors can be applied to other systems of functional equations, the nondegenerate solutions of which prove the possibility of mutual embedding of some geometries of two sets.
Keywords: geometry of two sets, functional equation
Mots-clés : Jordan form of matrices.
@article{IVM_2021_8_a4,
     author = {V. A. Kyrov and G. G. Mikhailichenko},
     title = {Nondegenerate canonical solutions of one system of functional equations},
     journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika},
     pages = {46--55},
     publisher = {mathdoc},
     number = {8},
     year = {2021},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/IVM_2021_8_a4/}
}
TY  - JOUR
AU  - V. A. Kyrov
AU  - G. G. Mikhailichenko
TI  - Nondegenerate canonical solutions of one system of functional equations
JO  - Izvestiâ vysših učebnyh zavedenij. Matematika
PY  - 2021
SP  - 46
EP  - 55
IS  - 8
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IVM_2021_8_a4/
LA  - ru
ID  - IVM_2021_8_a4
ER  - 
%0 Journal Article
%A V. A. Kyrov
%A G. G. Mikhailichenko
%T Nondegenerate canonical solutions of one system of functional equations
%J Izvestiâ vysših učebnyh zavedenij. Matematika
%D 2021
%P 46-55
%N 8
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IVM_2021_8_a4/
%G ru
%F IVM_2021_8_a4
V. A. Kyrov; G. G. Mikhailichenko. Nondegenerate canonical solutions of one system of functional equations. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 8 (2021), pp. 46-55. http://geodesic.mathdoc.fr/item/IVM_2021_8_a4/

[1] Mikhailichenko G. G., “Dvumetricheskie fizicheskie struktury ranga $(n+1,2)$”, Sib. matem. zhurn., 34:3 (1993), 132–143 | MR | Zbl

[2] Kyrov V. A., “O vlozhenii dvumetricheskikh fenomenologicheski simmetrichnykh geometrii”, Vestn. Tomsk. gos. un-ta, Matem. i mekhan., 56 (2018), 5–16 | DOI | MR

[3] Kyrov V. A., Mikhailichenko G. G., “Vlozhenie additivnoi dvumetricheskoi fenomenologicheski simmetrichnoi geometrii dvukh mnozhestv ranga $(2,2)$ v dvumetricheskie fenomenologicheski simmetrichnye geometrii dvukh mnozhestv ranga $(3,2)$”, Vestn. Udmurtsk. un-ta, Matem. Mekhan. Kompyut. nauki, 28:2 (2018), 305–327 | DOI | MR | Zbl

[4] Bogdanova R. A., Mikhailichenko G. G., “Posledovatelnoe po rangu $(n+1,2)$ vlozhenie dvumetricheskikh fenomenologicheski simmetrichnykh geometrii dvukh mnozhestv”, Izv. vuzov. Matem., 2020, no. 6, 9–14 | DOI | Zbl

[5] Kostrikin A. I., Vvedenie v algebru, Nauka, M., 1977 | MR