Continuation of polyanalytic functions
Izvestiâ vysših učebnyh zavedenij. Matematika, no. 8 (2021), pp. 37-45.

Voir la notice de l'article provenant de la source Math-Net.Ru

It is considered the problem of continuation the $n$ analytic function in to a domain by values of its sequential derivatives up to the $(n-1)$-th order on a part of the boundary. It is also considered the problem of inversion of a Cauchy type integral to a Cauchy integral for such functions.
Keywords: Cauchy-Riemann equation, $n$-analytic function, Cauchy theorem, Sokhotskiy-Plemelh formula
Mots-clés : continuation formula.
@article{IVM_2021_8_a3,
     author = {T. Ishankulov and D. Sh. Fozilov},
     title = {Continuation of polyanalytic functions},
     journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika},
     pages = {37--45},
     publisher = {mathdoc},
     number = {8},
     year = {2021},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/IVM_2021_8_a3/}
}
TY  - JOUR
AU  - T. Ishankulov
AU  - D. Sh. Fozilov
TI  - Continuation of polyanalytic functions
JO  - Izvestiâ vysših učebnyh zavedenij. Matematika
PY  - 2021
SP  - 37
EP  - 45
IS  - 8
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IVM_2021_8_a3/
LA  - ru
ID  - IVM_2021_8_a3
ER  - 
%0 Journal Article
%A T. Ishankulov
%A D. Sh. Fozilov
%T Continuation of polyanalytic functions
%J Izvestiâ vysših učebnyh zavedenij. Matematika
%D 2021
%P 37-45
%N 8
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IVM_2021_8_a3/
%G ru
%F IVM_2021_8_a3
T. Ishankulov; D. Sh. Fozilov. Continuation of polyanalytic functions. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 8 (2021), pp. 37-45. http://geodesic.mathdoc.fr/item/IVM_2021_8_a3/

[1] Balk M.B., “Polianaliticheskie funktsii i ikh obobscheniya”, Itogi nauki i tekhn., Ser. Sovrem. probl. matem. Fundam. napravleniya, 85, 1991, 187–246

[2] Heinrich Begehr, Ajay Kumar, “Boundary value problems for bipolyanalytic functions”, Appl. Anal., 85:9 (2006), 1045–1077 | DOI | MR | Zbl

[3] Begehr A. H., “A boundary value problem for Bitsadze equation in the unit disc”, J. Contemporary Math. Anal., 42 (2007), 177–183 | DOI

[4] Lavrentev M. M., Romanov V. G., Shishatskii S. P., Nekorrektnye zadachi matematicheskoi fiziki i analiza, Nauka, M., 1980 | MR

[5] Evgrafov M. A., Analiticheskie funktsii, Nauka, M., 1991 | MR

[6] Teodoresku N., La dérivée aréolaire et ses applications à la Physique Mathématique, Thése, Paris, 1931

[7] Aizenberg L. A., Formuly Karlemana v kompleksnom analize. Pervye prilozheniya, Nauka, Novosibirsk, 1990 | MR

[8] Muskhelishvili N. I., Singulyarnye integralnye uravneniya, Fizmatgiz, M., 1962

[9] Fok V. A., Kuni F. M., “O vvedenii “gasyaschei” funktsii v dispersionnye sootnosheniya”, DAN SSSR, 127:6 (1959), 1195–1196

[10] Privalov I. I., Granichnye svoistva analiticheskikh funktsii, Gostekhizdat, M., 1950 | MR

[11] Pokazeev V. V., “Integral tipa Koshi dlya polianaliticheskikh funktsii”, Tr. Seminara po kraevym zadacham, 17, Kazansk. un-t, 1980, 133–139 | MR