@article{IVM_2021_8_a2,
author = {V. F. Vildanova},
title = {Uniqueness of solution to the {Cauchy} problem for aggregation equation in hyperbolic space},
journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika},
pages = {27--36},
year = {2021},
number = {8},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/IVM_2021_8_a2/}
}
V. F. Vildanova. Uniqueness of solution to the Cauchy problem for aggregation equation in hyperbolic space. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 8 (2021), pp. 27-36. http://geodesic.mathdoc.fr/item/IVM_2021_8_a2/
[1] Vildanova V.F., “Suschestvovanie resheniya zadachi Koshi dlya uravneniya agregatsii v giperbolicheskom prostranstve”, Izv. vuzov. Matem., 2020, no. 7, 33–44 | Zbl
[2] Vildanova V.F., “Suschestvovanie i edinstvennost slabogo resheniya integro-differentsialnogo uravneniya agregatsii na rimanovom mnogoobrazii”, Matem. sb., 211:2 (2020), 74–105 | MR | Zbl
[3] Bertozzi A., Slepcev D., “Existence and Uniqueness of Solutions to an Aggregation Equation with Degenerate Diffusion”, Comm. Pur. Appl. Anal., 9:6 (2010), 1617–1637 | DOI | MR | Zbl
[4] Vildanova V. F., “Suschestvovanie i edinstvennost slabogo resheniya nelokalnogo uravneniya agregatsii s vyrozhdayuscheisya diffuziei obschego vida”, Matem. sb., 209:2 (2018), 66–81 | MR | Zbl
[5] Punzo F., “Well-posedness of the Cauchy problem for nonlinear parabolic equations with variable density in the hyperbolic space”, Nonlinear Diff. Equat. and Appl., 19 (2012), 485–501 | DOI | MR | Zbl
[6] Sobolev S. L., Nekotorye primeneniya funktsionalnogo analiza v matematicheskoi fizike, Nauka, M., 1988 | MR
[7] Lions Zh.-L., Madzhenes E., Neodnorodnye granichnye zadachi i ikh prilozheniya, Mir, M., 1971