Uniqueness of solution to the Cauchy problem for aggregation equation in hyperbolic space
Izvestiâ vysših učebnyh zavedenij. Matematika, no. 8 (2021), pp. 27-36.

Voir la notice de l'article provenant de la source Math-Net.Ru

In hyperbolic space the Cauchy problem is considered for the aggregation equation. Non-negative initial function is bounded and summable. The uniqueness of a weak solution is proved. The existence of solution was established in a previous paper.
Keywords: the aggregation equation, uniqueness of solution, hyperbolic space.
@article{IVM_2021_8_a2,
     author = {V. F. Vildanova},
     title = {Uniqueness of solution to the {Cauchy} problem for aggregation equation in hyperbolic space},
     journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika},
     pages = {27--36},
     publisher = {mathdoc},
     number = {8},
     year = {2021},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/IVM_2021_8_a2/}
}
TY  - JOUR
AU  - V. F. Vildanova
TI  - Uniqueness of solution to the Cauchy problem for aggregation equation in hyperbolic space
JO  - Izvestiâ vysših učebnyh zavedenij. Matematika
PY  - 2021
SP  - 27
EP  - 36
IS  - 8
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IVM_2021_8_a2/
LA  - ru
ID  - IVM_2021_8_a2
ER  - 
%0 Journal Article
%A V. F. Vildanova
%T Uniqueness of solution to the Cauchy problem for aggregation equation in hyperbolic space
%J Izvestiâ vysših učebnyh zavedenij. Matematika
%D 2021
%P 27-36
%N 8
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IVM_2021_8_a2/
%G ru
%F IVM_2021_8_a2
V. F. Vildanova. Uniqueness of solution to the Cauchy problem for aggregation equation in hyperbolic space. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 8 (2021), pp. 27-36. http://geodesic.mathdoc.fr/item/IVM_2021_8_a2/

[1] Vildanova V.F., “Suschestvovanie resheniya zadachi Koshi dlya uravneniya agregatsii v giperbolicheskom prostranstve”, Izv. vuzov. Matem., 2020, no. 7, 33–44 | Zbl

[2] Vildanova V.F., “Suschestvovanie i edinstvennost slabogo resheniya integro-differentsialnogo uravneniya agregatsii na rimanovom mnogoobrazii”, Matem. sb., 211:2 (2020), 74–105 | MR | Zbl

[3] Bertozzi A., Slepcev D., “Existence and Uniqueness of Solutions to an Aggregation Equation with Degenerate Diffusion”, Comm. Pur. Appl. Anal., 9:6 (2010), 1617–1637 | DOI | MR | Zbl

[4] Vildanova V. F., “Suschestvovanie i edinstvennost slabogo resheniya nelokalnogo uravneniya agregatsii s vyrozhdayuscheisya diffuziei obschego vida”, Matem. sb., 209:2 (2018), 66–81 | MR | Zbl

[5] Punzo F., “Well-posedness of the Cauchy problem for nonlinear parabolic equations with variable density in the hyperbolic space”, Nonlinear Diff. Equat. and Appl., 19 (2012), 485–501 | DOI | MR | Zbl

[6] Sobolev S. L., Nekotorye primeneniya funktsionalnogo analiza v matematicheskoi fizike, Nauka, M., 1988 | MR

[7] Lions Zh.-L., Madzhenes E., Neodnorodnye granichnye zadachi i ikh prilozheniya, Mir, M., 1971