Interpolation theorem for anisotropic net spaces
Izvestiâ vysših učebnyh zavedenij. Matematika, no. 8 (2021), pp. 3-15.

Voir la notice de l'article provenant de la source Math-Net.Ru

The paper studies the interpolation properties of anisotropic net spaces $N_{\bar{p},\bar{q}}(M)$, where $\bar{p}=(p_1, p_2)$, $\bar{q}=(q_1, q_2)$. It is shown that the following equality holds with respect to the multidimensional interpolation method $$ (N_{\bar{p}_0,\bar{q}_0}(M), N_{\bar{p}_1,\bar{q}_1}(M))_{\bar{\theta},\bar{q}}=N_{\bar{p},\bar{q}}(M), \frac{1}{\bar{p}}=\frac{1-\bar{\theta}}{\bar{p}_0}+\frac{\bar{\theta}}{\bar{p}_1}. $$
Keywords: net space, real interpolation method.
Mots-clés : anisotropic space
@article{IVM_2021_8_a0,
     author = {A. N. Bashirova and A. K. Kalidolday and E. D. Nursultanov},
     title = {Interpolation theorem for anisotropic net spaces},
     journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika},
     pages = {3--15},
     publisher = {mathdoc},
     number = {8},
     year = {2021},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/IVM_2021_8_a0/}
}
TY  - JOUR
AU  - A. N. Bashirova
AU  - A. K. Kalidolday
AU  - E. D. Nursultanov
TI  - Interpolation theorem for anisotropic net spaces
JO  - Izvestiâ vysših učebnyh zavedenij. Matematika
PY  - 2021
SP  - 3
EP  - 15
IS  - 8
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IVM_2021_8_a0/
LA  - ru
ID  - IVM_2021_8_a0
ER  - 
%0 Journal Article
%A A. N. Bashirova
%A A. K. Kalidolday
%A E. D. Nursultanov
%T Interpolation theorem for anisotropic net spaces
%J Izvestiâ vysših učebnyh zavedenij. Matematika
%D 2021
%P 3-15
%N 8
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IVM_2021_8_a0/
%G ru
%F IVM_2021_8_a0
A. N. Bashirova; A. K. Kalidolday; E. D. Nursultanov. Interpolation theorem for anisotropic net spaces. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 8 (2021), pp. 3-15. http://geodesic.mathdoc.fr/item/IVM_2021_8_a0/

[1] Nursultanov E.D., “Setevye prostranstva i neravenstva tipa Khardi–Litlvuda”, Matem. sb., 189:3 (1998), 83–102 | MR | Zbl

[2] Nursultanov E. D., “A lower bound for a Fourier transform multiplicator from $M(L_p\rightarrow L_q)$”, Math. Notes, 62:6 (1997), 792–796 | DOI | MR | Zbl

[3] Nursultanov E. D., Tleukhanova N. T., “Lower and upper bounds for the norm of multipliers of multiple trigonometric Fourier series in Lebesgue spaces”, Func. Anal. Appl., 34:2 (2000), 151–153 | DOI | MR | Zbl

[4] Nursultanov E. D., “O koeffitsientakh kratnykh ryadov Fure iz $L_p$-prostranstv”, Izv. RAN., Ser. matem., 64:1 (2000), 95–122 | MR | Zbl

[5] Nursultanov E. D., “Interpolyatsionnye teoremy dlya anizotropnykh funktsionalnykh prostranstv i ikh prilozheniya”, Dokl. RAN, 394:1 (2004), 1–4 | MR

[6] Nursultanov E. D., Tikhonov S., “Net spaces and boundedness of integral operators”, J. Geom. Anal., 21 (2011), 950–981 | DOI | MR | Zbl

[7] Akylzhanov R., Nursultanov E., Ruzhansky M., “Hardy-Littlewood-Paley inequalities and Fourier multipliers on SU$(2)$”, Studia Math., 234:1 (2016), 1–29 | DOI | MR | Zbl

[8] Akylzhanov R., Ruzhansky M., “Net spaces on lattices, Hardy-Littlewood type unequalities, and their converses”, Eur. Math. Jour., 8:3 (2017), 10–27 | MR | Zbl

[9] Akylzhanov R., Ruzhansky M., Nursultanov E., “Hardy-Littlewood, Hausdorff-Young-Paley inequalities, and $L_p\rightarrow L_q$ Fourier multipliers on compact homogeneous manifolds”, J. Math. Anal. and Appl., 479:2 (2019), 1519–1548 | DOI | MR | Zbl

[10] Nursultanov E. D., Aubakirov T. U., “Teorema Khardi–Littlvuda dlya ryadov Fure–Khaara”, Matem. zametki, 73:3 (2003), 340–347 | MR | Zbl

[11] Fernandez D. L., “Lorentz spaces with mixed norms”, J. Funct. Anal., 25:2 (1977), 128–146 | DOI | MR | Zbl

[12] Fernandez D. L., “Interpolation of $2^n$ Banach spaces”, Stud. Math. (PRL), 65:2 (1979), 175–201 | DOI | MR | Zbl

[13] Fernandez D. L., “Interpolation of $2^n$ Banach space and the Calderon spaces”, Proc. London Math. Soc., 56 (1988), 143–162 | DOI | MR | Zbl

[14] Blozinski A. P., “Multivariate rearrangements and Banach function spaces with mixed norms”, Trans. Amer. Math. Soc., 263:1 (1981), 149–167 | DOI | MR | Zbl

[15] Nursultanov E. D., “O primenenii interpolyatsionnykh metodov k issledovaniyu svoistv funktsii mnogikh peremennykh”, Matem. zametki, 75:3 (2004), 372–383 | MR | Zbl

[16] Bekmaganbetov K., Nursultanov E. D., “Interpolation of Besov $B_{p\tau}^{\sigma q}$ and Lizorkin-Triebel $F_{p\tau}^{\sigma q}$ spaces”, Anal. Math., 35 (2009), 169–188 | DOI | MR | Zbl

[17] Sparr G., “Interpolation of several Banach spaces”, Ann. Mat. Pura Appl., 99 (1974), 247–316 | DOI | MR | Zbl

[18] Cobus F., Peetre J., “Interpolation compact operators: The multidimensional case”, Proc. London Math. Soc., 63:2 (1991), 371–400 | DOI | MR

[19] Krepkogorskii V. L., Kontrprimery k teorii operatorov v prostranstvakh so smeshannoi normoi, Dep. VINITI, No 2963-80, Kazan, 1980 | Zbl

[20] Krepkogorskii V. L., “Ob interpolyatsii v prostranstvakh $L_p$ so smeshannoi normoi”, Izv. vuzov. Matem., 1980, no. 10, 75–78 | MR | Zbl