Voir la notice de l'article provenant de la source Math-Net.Ru
@article{IVM_2021_7_a7, author = {T. G. Ergashev and Z. R. Tulakova}, title = {The {Dirichlet} problem for an elliptic equation with several singular coefficients in an infinite domain}, journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika}, pages = {81--91}, publisher = {mathdoc}, number = {7}, year = {2021}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/IVM_2021_7_a7/} }
TY - JOUR AU - T. G. Ergashev AU - Z. R. Tulakova TI - The Dirichlet problem for an elliptic equation with several singular coefficients in an infinite domain JO - Izvestiâ vysših učebnyh zavedenij. Matematika PY - 2021 SP - 81 EP - 91 IS - 7 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/IVM_2021_7_a7/ LA - ru ID - IVM_2021_7_a7 ER -
%0 Journal Article %A T. G. Ergashev %A Z. R. Tulakova %T The Dirichlet problem for an elliptic equation with several singular coefficients in an infinite domain %J Izvestiâ vysših učebnyh zavedenij. Matematika %D 2021 %P 81-91 %N 7 %I mathdoc %U http://geodesic.mathdoc.fr/item/IVM_2021_7_a7/ %G ru %F IVM_2021_7_a7
T. G. Ergashev; Z. R. Tulakova. The Dirichlet problem for an elliptic equation with several singular coefficients in an infinite domain. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 7 (2021), pp. 81-91. http://geodesic.mathdoc.fr/item/IVM_2021_7_a7/
[1] Bers L., Matematicheskie voprosy dozvukovoi i okolozvukovoi gazovoi dinamiki, In. lit., M., 1961
[2] Frankl F. I., Izbrannye trudy po gazovoi dinamike, Nauka, M., 1973
[3] Gilbert R., Function Theoretic Methods in Partial Differential Equations, Academic Press, New York-London, 1969 | MR | Zbl
[4] Bitsadze A. V., Nekotorye klassy uravnenii v chastnykh proizvodnykh, Nauka, M., 1981
[5] Salakhitdinov M. S., Mirsaburov M., Nelokalnye kraevye zadachi dlya uravnenii smeshannogo tipa s singulyarnymi koeffitsientami, Un-t, Tashkent, 2005
[6] Smirnov M. M., Vyrozhdayuschiesya ellipticheskie i giperbolicheskie uravneniya, Nauka, M., 1966
[7] Salakhitdinov M. S., Islomov B. I., Uravneniya smeshannogo tipa s dvumya liniyami vyrozhdeniya, Mumtoz suz, Tashkent, 2009
[8] Srivastava H. M., Hasanov A., Choi J., “Double-layer potentials for a generalized bi-axially symmetric Helmholtz equation”, Sohag J. Math., 2:1 (2015), 1–10
[9] Berdyshev A. S., Hasanov A., Ergashev T. G., “Double-layer potentials for a generalized bi-axially symmetric Helmholtz equation. II”, Complex Variables and Elliptic Equat., 65:2 (2020), 316–332 | DOI | MR | Zbl
[10] Ergashev T. G., “Tretii potentsial dvoinogo sloya dlya obobschennogo dvuosesimmetricheskogo uravneniya Gelmgoltsa”, Ufimsk. matem. zhurn., 10:4 (2018), 111–121 | MR | Zbl
[11] Ergashev T. G., “Chetvertyi potentsial dvoinogo sloya dlya obobschennogo dvuosesimmetricheskogo uravneniya Gelmgoltsa”, Vestn. Tomsk. gos. un-ta. Matem. mekhan., 2017, no. 50, 45–56
[12] Agostinelli S., “Integrazione dell'equazione differenziale e problema analogo a quello di Dirichlet per un campo emisferico”, Atti della Accademia Nazionale dei Lincei, 26:6 (1937), 7–8
[13] Olevskii M. N., “Resheniya zadachi Dirikhle, otnosyascheisya k uravneniyu $\Delta u + px_{n}^{ - 1} u_{x_{n} } = f$ dlya polusfericheskoi oblasti”, DAN SSSR, 64:6 (1949), 767–770 | Zbl
[14] Hasanov A., Karimov E. T., “Fundamental solutions for a class of three-dimensional elliptic equations with singular coefficients”, Appl. Math. Lett., 22 (2009), 1828–1832 | DOI | MR | Zbl
[15] Karimov E. T., “O zadache Dirikhle dlya trekhmernogo ellipticheskogo uravneniya s singulyarnymi koeffitsientami”, DAN Respubliki Uzbekistan, 2010, no. 2, 9–12
[16] Karimov E. T., Nieto J. J., “The Dirichlet problem for a 3D elliptic equation with two singular coefficients”, Comput. Math. Appl., 62 (2011), 214–224 | DOI | MR | Zbl
[17] Karimov E. T., “On a boundary problem with Neumann's condition for 3D singular elliptic equations”, Appl. Math. Lett., 23 (2010), 517–522 | DOI | MR | Zbl
[18] Nieto J. J., Karimov E. T., “On an anologue of the Holmgreen's problem for 3D singular elliptic equation”, Azian-European J. Math., 5:2 (2012), 1250021, 18 pp. | DOI | MR | Zbl
[19] Nazipov I. T., “Reshenie prostranstvennoi zadachi Trikomi dlya singulyarnogo uravneniya smeshannogo tipa metodom integralnykh uravnenii”, Izv. vuzov. Matem., 2011, no. 3, 69–85 | MR | Zbl
[20] Ergashev T. G., “Fundamental solutions for a class of multidimensional elliptic equations with several singular coefficients”, J. Sib. Federal Univ. Math. and Phys., 13:1 (2020), 48–57 | DOI | MR | Zbl
[21] Ergashev T. G., “Obobschennaya zadacha Kholmgrena dlya ellipticheskogo uravneniya s neskolkimi singulyarnymi koeffitsientami”, Differents. uravneniya, 56:7 (2020), 872–886 | MR | Zbl
[22] Repin O. A., Lerner M. E., “O zadache Dirikhle dlya obobschennogo dvuosesimmetricheskogo uravneniya Gelmgoltsa v pervom kvadrante”, Vestn. Tomsk. gos. tekh. un-ta, Ser. fiz.-matem. nauki, 1998, no. 6, 5–8
[23] Lerner M. E., Repin O. A., “Nelokalnye kraevye zadachi v vertikalnoi polupolose dlya obobschennogo osesimmetricheskogo uravneniya Gelmgoltsa”, Differents. uravneniya, 37:11 (2001), 1562–1564 | MR | Zbl
[24] Flaisher N. M., “Ob odnoi zadache Franklya dlya uravneniya Lavrenteva v sluchae neogranichennoi oblasti”, Izv. vuzov. Matem., 1966, no. 6, 152–156
[25] Ruziev M. Kh., “O nelokalnoi zadache dlya uravneniya smeshannogo tipa s singulyarnym koeffitsientom v neogranichennoi oblasti”, Izv. vuzov. Matem., 2010, no. 11, 41–49
[26] Salakhitdinov M. S., Khasanov A., “K teorii mnogomernogo uravneniya Gellerstedta”, Uzbeksk. matem. zhurn., 2007, no. 3, 95–109 | Zbl
[27] Marichev O. I., “Singulyarnye kraevye zadachi dlya obobschennogo dvuosesimmetricheskogo uravneniya Gelmgoltsa”, DAN SSSR, 230:3 (1976), 523–526 | MR | Zbl
[28] Ergashev T. G., “The Dirichlet problem for elliptic equation with several singular coefficients”, e-Journal of Anal. and Appl. Math., 2018, no. 1, 81–99 | MR
[29] Beitmen G., Erdeii A., Vysshie transtsendentnye funktsii, v. 1, Nauka, M., 1973
[30] Marichev O. I., Metod vychisleniya integralov ot spetsialnykh funktsii (teoriya i tablitsy formul), Nauka i tekhnika, Minsk, 1978
[31] Srivastava H. M., Karlsson P. W., Multiple Gaussian Hypergeometric Series, Ellis Horwood Series in Mathematics and Its Applications, John Wiley and Sons, Halsted Press, New York–Chichester–Brisbane–Toronto, 1985 | MR | Zbl
[32] Appell P., Kampe de Feriet J., Fonctions Hypergeometriques et Hyperspheriques; Polynomes d'Hermite, Gauthier - Villars, Paris, 1926
[33] Bitsadze A. V., Kraevye zadachi dlya ellipticheskikh uravnenii vtorogo poryadka, Nauka, M., 1966
[34] Miranda S., Uravneniya s chastnymi proizvodnymi ellipticheskogo tipa, In. lit., Leningrad, 1957
[35] Gradshtein I. S., Ryzhik I. M., Tablitsy integralov, summ, ryadov i proizvedenii, GIFML, M., 1962 | MR