The Dirichlet problem for an elliptic equation with several singular coefficients in an infinite domain
Izvestiâ vysših učebnyh zavedenij. Matematika, no. 7 (2021), pp. 81-91.

Voir la notice de l'article provenant de la source Math-Net.Ru

At present, the fundamental solutions of the multidimensional singular elliptic equation are known and they are expressed in terms of the well-known Lauricella hypergeometric function of several variables. In this paper, we study the Dirichlet problem for an elliptic equation with several singular coefficients in an unbounded domain. When finding the solution to the posed problem, the expansion and summation formulas , as well as the limit relation for the Lauricella hypergeometric function of several variables are used.
Keywords: Dirichlet problem, multidimensional elliptic equations with several singular coefficients, Lauricella hypergeometric function of many variables.
Mots-clés : decomposition formulas
@article{IVM_2021_7_a7,
     author = {T. G. Ergashev and Z. R. Tulakova},
     title = {The {Dirichlet} problem for an elliptic equation with several singular coefficients in an infinite domain},
     journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika},
     pages = {81--91},
     publisher = {mathdoc},
     number = {7},
     year = {2021},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/IVM_2021_7_a7/}
}
TY  - JOUR
AU  - T. G. Ergashev
AU  - Z. R. Tulakova
TI  - The Dirichlet problem for an elliptic equation with several singular coefficients in an infinite domain
JO  - Izvestiâ vysših učebnyh zavedenij. Matematika
PY  - 2021
SP  - 81
EP  - 91
IS  - 7
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IVM_2021_7_a7/
LA  - ru
ID  - IVM_2021_7_a7
ER  - 
%0 Journal Article
%A T. G. Ergashev
%A Z. R. Tulakova
%T The Dirichlet problem for an elliptic equation with several singular coefficients in an infinite domain
%J Izvestiâ vysših učebnyh zavedenij. Matematika
%D 2021
%P 81-91
%N 7
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IVM_2021_7_a7/
%G ru
%F IVM_2021_7_a7
T. G. Ergashev; Z. R. Tulakova. The Dirichlet problem for an elliptic equation with several singular coefficients in an infinite domain. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 7 (2021), pp. 81-91. http://geodesic.mathdoc.fr/item/IVM_2021_7_a7/

[1] Bers L., Matematicheskie voprosy dozvukovoi i okolozvukovoi gazovoi dinamiki, In. lit., M., 1961

[2] Frankl F. I., Izbrannye trudy po gazovoi dinamike, Nauka, M., 1973

[3] Gilbert R., Function Theoretic Methods in Partial Differential Equations, Academic Press, New York-London, 1969 | MR | Zbl

[4] Bitsadze A. V., Nekotorye klassy uravnenii v chastnykh proizvodnykh, Nauka, M., 1981

[5] Salakhitdinov M. S., Mirsaburov M., Nelokalnye kraevye zadachi dlya uravnenii smeshannogo tipa s singulyarnymi koeffitsientami, Un-t, Tashkent, 2005

[6] Smirnov M. M., Vyrozhdayuschiesya ellipticheskie i giperbolicheskie uravneniya, Nauka, M., 1966

[7] Salakhitdinov M. S., Islomov B. I., Uravneniya smeshannogo tipa s dvumya liniyami vyrozhdeniya, Mumtoz suz, Tashkent, 2009

[8] Srivastava H. M., Hasanov A., Choi J., “Double-layer potentials for a generalized bi-axially symmetric Helmholtz equation”, Sohag J. Math., 2:1 (2015), 1–10

[9] Berdyshev A. S., Hasanov A., Ergashev T. G., “Double-layer potentials for a generalized bi-axially symmetric Helmholtz equation. II”, Complex Variables and Elliptic Equat., 65:2 (2020), 316–332 | DOI | MR | Zbl

[10] Ergashev T. G., “Tretii potentsial dvoinogo sloya dlya obobschennogo dvuosesimmetricheskogo uravneniya Gelmgoltsa”, Ufimsk. matem. zhurn., 10:4 (2018), 111–121 | MR | Zbl

[11] Ergashev T. G., “Chetvertyi potentsial dvoinogo sloya dlya obobschennogo dvuosesimmetricheskogo uravneniya Gelmgoltsa”, Vestn. Tomsk. gos. un-ta. Matem. mekhan., 2017, no. 50, 45–56

[12] Agostinelli S., “Integrazione dell'equazione differenziale e problema analogo a quello di Dirichlet per un campo emisferico”, Atti della Accademia Nazionale dei Lincei, 26:6 (1937), 7–8

[13] Olevskii M. N., “Resheniya zadachi Dirikhle, otnosyascheisya k uravneniyu $\Delta u + px_{n}^{ - 1} u_{x_{n} } = f$ dlya polusfericheskoi oblasti”, DAN SSSR, 64:6 (1949), 767–770 | Zbl

[14] Hasanov A., Karimov E. T., “Fundamental solutions for a class of three-dimensional elliptic equations with singular coefficients”, Appl. Math. Lett., 22 (2009), 1828–1832 | DOI | MR | Zbl

[15] Karimov E. T., “O zadache Dirikhle dlya trekhmernogo ellipticheskogo uravneniya s singulyarnymi koeffitsientami”, DAN Respubliki Uzbekistan, 2010, no. 2, 9–12

[16] Karimov E. T., Nieto J. J., “The Dirichlet problem for a 3D elliptic equation with two singular coefficients”, Comput. Math. Appl., 62 (2011), 214–224 | DOI | MR | Zbl

[17] Karimov E. T., “On a boundary problem with Neumann's condition for 3D singular elliptic equations”, Appl. Math. Lett., 23 (2010), 517–522 | DOI | MR | Zbl

[18] Nieto J. J., Karimov E. T., “On an anologue of the Holmgreen's problem for 3D singular elliptic equation”, Azian-European J. Math., 5:2 (2012), 1250021, 18 pp. | DOI | MR | Zbl

[19] Nazipov I. T., “Reshenie prostranstvennoi zadachi Trikomi dlya singulyarnogo uravneniya smeshannogo tipa metodom integralnykh uravnenii”, Izv. vuzov. Matem., 2011, no. 3, 69–85 | MR | Zbl

[20] Ergashev T. G., “Fundamental solutions for a class of multidimensional elliptic equations with several singular coefficients”, J. Sib. Federal Univ. Math. and Phys., 13:1 (2020), 48–57 | DOI | MR | Zbl

[21] Ergashev T. G., “Obobschennaya zadacha Kholmgrena dlya ellipticheskogo uravneniya s neskolkimi singulyarnymi koeffitsientami”, Differents. uravneniya, 56:7 (2020), 872–886 | MR | Zbl

[22] Repin O. A., Lerner M. E., “O zadache Dirikhle dlya obobschennogo dvuosesimmetricheskogo uravneniya Gelmgoltsa v pervom kvadrante”, Vestn. Tomsk. gos. tekh. un-ta, Ser. fiz.-matem. nauki, 1998, no. 6, 5–8

[23] Lerner M. E., Repin O. A., “Nelokalnye kraevye zadachi v vertikalnoi polupolose dlya obobschennogo osesimmetricheskogo uravneniya Gelmgoltsa”, Differents. uravneniya, 37:11 (2001), 1562–1564 | MR | Zbl

[24] Flaisher N. M., “Ob odnoi zadache Franklya dlya uravneniya Lavrenteva v sluchae neogranichennoi oblasti”, Izv. vuzov. Matem., 1966, no. 6, 152–156

[25] Ruziev M. Kh., “O nelokalnoi zadache dlya uravneniya smeshannogo tipa s singulyarnym koeffitsientom v neogranichennoi oblasti”, Izv. vuzov. Matem., 2010, no. 11, 41–49

[26] Salakhitdinov M. S., Khasanov A., “K teorii mnogomernogo uravneniya Gellerstedta”, Uzbeksk. matem. zhurn., 2007, no. 3, 95–109 | Zbl

[27] Marichev O. I., “Singulyarnye kraevye zadachi dlya obobschennogo dvuosesimmetricheskogo uravneniya Gelmgoltsa”, DAN SSSR, 230:3 (1976), 523–526 | MR | Zbl

[28] Ergashev T. G., “The Dirichlet problem for elliptic equation with several singular coefficients”, e-Journal of Anal. and Appl. Math., 2018, no. 1, 81–99 | MR

[29] Beitmen G., Erdeii A., Vysshie transtsendentnye funktsii, v. 1, Nauka, M., 1973

[30] Marichev O. I., Metod vychisleniya integralov ot spetsialnykh funktsii (teoriya i tablitsy formul), Nauka i tekhnika, Minsk, 1978

[31] Srivastava H. M., Karlsson P. W., Multiple Gaussian Hypergeometric Series, Ellis Horwood Series in Mathematics and Its Applications, John Wiley and Sons, Halsted Press, New York–Chichester–Brisbane–Toronto, 1985 | MR | Zbl

[32] Appell P., Kampe de Feriet J., Fonctions Hypergeometriques et Hyperspheriques; Polynomes d'Hermite, Gauthier - Villars, Paris, 1926

[33] Bitsadze A. V., Kraevye zadachi dlya ellipticheskikh uravnenii vtorogo poryadka, Nauka, M., 1966

[34] Miranda S., Uravneniya s chastnymi proizvodnymi ellipticheskogo tipa, In. lit., Leningrad, 1957

[35] Gradshtein I. S., Ryzhik I. M., Tablitsy integralov, summ, ryadov i proizvedenii, GIFML, M., 1962 | MR