On Hadamard compositions of Gelfond--Leont'ev derivatives of analytic functions
Izvestiâ vysših učebnyh zavedenij. Matematika, no. 7 (2021), pp. 67-80.

Voir la notice de l'article provenant de la source Math-Net.Ru

For analytic functions $f$ and $g$ given by power series with different finite convergence radii, properties of the Hadamard composition of their Gelfond–Leont'ev derivatives is investigated. For study, generalized orders are used. The connection between the growth of the maximal term of the Hadamard composition of Gelfond–Leont'ev derivatives and the growth of the maximal term of the Gelfond–Leont'ev derivative of Hadamard composition is established. Similar results is obtained in terms of the classical order and lower order of growth.
Keywords: analytic function, Gelfond–Leont'ev derivative
Mots-clés : Hadamard composition, maximal term.
@article{IVM_2021_7_a6,
     author = {M. N. Sheremeta and O. M. Mulyava},
     title = {On {Hadamard} compositions of {Gelfond--Leont'ev} derivatives of analytic functions},
     journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika},
     pages = {67--80},
     publisher = {mathdoc},
     number = {7},
     year = {2021},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/IVM_2021_7_a6/}
}
TY  - JOUR
AU  - M. N. Sheremeta
AU  - O. M. Mulyava
TI  - On Hadamard compositions of Gelfond--Leont'ev derivatives of analytic functions
JO  - Izvestiâ vysših učebnyh zavedenij. Matematika
PY  - 2021
SP  - 67
EP  - 80
IS  - 7
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IVM_2021_7_a6/
LA  - ru
ID  - IVM_2021_7_a6
ER  - 
%0 Journal Article
%A M. N. Sheremeta
%A O. M. Mulyava
%T On Hadamard compositions of Gelfond--Leont'ev derivatives of analytic functions
%J Izvestiâ vysših učebnyh zavedenij. Matematika
%D 2021
%P 67-80
%N 7
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IVM_2021_7_a6/
%G ru
%F IVM_2021_7_a6
M. N. Sheremeta; O. M. Mulyava. On Hadamard compositions of Gelfond--Leont'ev derivatives of analytic functions. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 7 (2021), pp. 67-80. http://geodesic.mathdoc.fr/item/IVM_2021_7_a6/

[1] Hadamard J., “Theoreme sur le series entieres”, Acta math., 22 (1899), 55–63 | DOI | MR

[2] Hadamard J., “La serie de Taylor et son prolongement analitique”, Scientia phys.-math., 12 (1901), 43–62

[3] Biberbakh L., Analiticheskoe prodolzhenie, Nauka, M., 1967

[4] Korobeinik Yu. F., Mavrodi N. N., “Singulyarnye tochki kompozitsii Adamara”, Ukr. matem. zhurn., 42:12 (1990), 1711–1713 | MR | Zbl

[5] Sen M. K., “On some properties of an integral function $f*g$”, Riv. Math. Univ. Parma (2), 8 (1967), 317–328 | MR | Zbl

[6] Sen M. K., “On the maximum term of a class of integral functions and its derivatives”, Ann. Pol. Math., 22 (1970), 291–298 | DOI | MR | Zbl

[7] Gelfond A. O., Leontev A. F., “Ob odnom obobschenii ryada Fure”, Matem. sb., 23:3 (1957), 477–500

[8] Lugovaya L. L., Mulyava O. M., Sheremeta M. M., “Svoistva adamarovskikh kompozitsii proizvodnykh Gelfonda–Leonteva analiticheskikh funktsii”, Ufimsk. matem. zhurn., 2:2 (2010), 90–101 | Zbl

[9] Sheremeta M. M., “O svyazi mezhdu rostom analiticheskoi v kruge funktsii i modulyami koeffitsientov ee ryada Teilora”, DAN USSR, 1966, no. 6, 729–731

[10] Gal Yu. M., Sheremeta M. M., “O roste analiticheskikh funktsii v poluploskosti, zadannykh ryadami Dirikhle”, DAN USSR, ser. A, 1978, no. 12, 1065–1067

[11] Gal Yu. M., O roste analiticheskikh funktsii, zadannykh absolyutno skhodyaschimisya v poluploskosti ryadami Dirikhle, Rukopis dep. v VINITI, No 4080-80 Dep., Drogobych, 1980

[12] Polia G., Sege G., Zadachi i teoremy iz analiza, v. II, Nauka, M., 1978

[13] Fujivara M., “On the relation between $M(r)$ and the coefficients of a power series”, Proc. Imp. Acad. Japan., 8 (1932), 220–223 | MR

[14] Boichuk V. S., “O roste absolyutno skhodyaschikhsya v poluploskosti ryadov Dirikhle”, Matem. sb., Nauk. dumka, Kiev, 1976