A new spectral approach in the matrix algebra: $\mathrm{C}$-determinant pseudospectrum
Izvestiâ vysših učebnyh zavedenij. Matematika, no. 7 (2021), pp. 3-11.

Voir la notice de l'article provenant de la source Math-Net.Ru

We develop a general framework for perturbation analysis of matrix. More specifically, the $\mathrm{C}$-determinant pseudospectrum $\mathrm{Det}_{\varepsilon}^{C}(T)$ for an element in the matrix algebra $\mathcal{M}_n(\mathbb{C})$ is studied. We also make several observations on the $\mathrm{C}$-determinant pseudospectrum.
Keywords: pseudospectrum, condition pseudospectrum, determinant pseudospectrum.
@article{IVM_2021_7_a0,
     author = {A. Ammar and A. Jeribi and K. Mahfoudhi},
     title = {A new spectral approach in the matrix algebra: $\mathrm{C}$-determinant pseudospectrum},
     journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika},
     pages = {3--11},
     publisher = {mathdoc},
     number = {7},
     year = {2021},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/IVM_2021_7_a0/}
}
TY  - JOUR
AU  - A. Ammar
AU  - A. Jeribi
AU  - K. Mahfoudhi
TI  - A new spectral approach in the matrix algebra: $\mathrm{C}$-determinant pseudospectrum
JO  - Izvestiâ vysših učebnyh zavedenij. Matematika
PY  - 2021
SP  - 3
EP  - 11
IS  - 7
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IVM_2021_7_a0/
LA  - ru
ID  - IVM_2021_7_a0
ER  - 
%0 Journal Article
%A A. Ammar
%A A. Jeribi
%A K. Mahfoudhi
%T A new spectral approach in the matrix algebra: $\mathrm{C}$-determinant pseudospectrum
%J Izvestiâ vysših učebnyh zavedenij. Matematika
%D 2021
%P 3-11
%N 7
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IVM_2021_7_a0/
%G ru
%F IVM_2021_7_a0
A. Ammar; A. Jeribi; K. Mahfoudhi. A new spectral approach in the matrix algebra: $\mathrm{C}$-determinant pseudospectrum. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 7 (2021), pp. 3-11. http://geodesic.mathdoc.fr/item/IVM_2021_7_a0/

[1] Ammar A., Jeribi A., Mahfoudhi K., “A Characterization of the Essential Approximation Pseudospectrum on a Banach space”, Filomat, 31:11 (2017), 3599–3610 | DOI | MR

[2] Ammar A., Jeribi A., Mahfoudhi K., “A Characterization of the Condition Pseudospectrum on Banach Space”, Funct. Anal. Approx. Comput., 10:2 (2018), 13–21 | MR | Zbl

[3] Jeribi A., Spectral Theory and Applications of Linear Operators and Block Operator Matrices, Springer-Verlag, New-York, 2015 | MR | Zbl

[4] Trefethen L.N., Embree M., Spectra and Pseudospectra: The Behavior of Nonnormal Matrices and Operators, Prin. Univ. Press, Princeton and Oxford, 2005 | MR | Zbl

[5] Krishna Kumar G., “Determinant Spectrum: A Generalization of Eigenvalues”, Funct. Anal. Approx. Comput., 10:2 (2018), 1–12 | MR | Zbl