The boundedness of maximal operators associated with singular surfaces
Izvestiâ vysših učebnyh zavedenij. Matematika, no. 6 (2021), pp. 84-94

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper it is investigated maximal operators associated with some singular surfaces in $\mathbb{R}^{3}.$ It is proved boundedness of these operators in $L^{p}$, when a surface is given by parametric equations.
Keywords: maximal operator, averaging operator, fractional power series, regular point, singular surface.
@article{IVM_2021_6_a7,
     author = {S. E. Usmanov},
     title = {The boundedness of maximal operators associated with singular surfaces},
     journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika},
     pages = {84--94},
     publisher = {mathdoc},
     number = {6},
     year = {2021},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/IVM_2021_6_a7/}
}
TY  - JOUR
AU  - S. E. Usmanov
TI  - The boundedness of maximal operators associated with singular surfaces
JO  - Izvestiâ vysših učebnyh zavedenij. Matematika
PY  - 2021
SP  - 84
EP  - 94
IS  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IVM_2021_6_a7/
LA  - ru
ID  - IVM_2021_6_a7
ER  - 
%0 Journal Article
%A S. E. Usmanov
%T The boundedness of maximal operators associated with singular surfaces
%J Izvestiâ vysših učebnyh zavedenij. Matematika
%D 2021
%P 84-94
%N 6
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IVM_2021_6_a7/
%G ru
%F IVM_2021_6_a7
S. E. Usmanov. The boundedness of maximal operators associated with singular surfaces. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 6 (2021), pp. 84-94. http://geodesic.mathdoc.fr/item/IVM_2021_6_a7/