The boundedness of maximal operators associated with singular surfaces
Izvestiâ vysših učebnyh zavedenij. Matematika, no. 6 (2021), pp. 84-94.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper it is investigated maximal operators associated with some singular surfaces in $\mathbb{R}^{3}.$ It is proved boundedness of these operators in $L^{p}$, when a surface is given by parametric equations.
Keywords: maximal operator, averaging operator, fractional power series, regular point, singular surface.
@article{IVM_2021_6_a7,
     author = {S. E. Usmanov},
     title = {The boundedness of maximal operators associated with singular surfaces},
     journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika},
     pages = {84--94},
     publisher = {mathdoc},
     number = {6},
     year = {2021},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/IVM_2021_6_a7/}
}
TY  - JOUR
AU  - S. E. Usmanov
TI  - The boundedness of maximal operators associated with singular surfaces
JO  - Izvestiâ vysših učebnyh zavedenij. Matematika
PY  - 2021
SP  - 84
EP  - 94
IS  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IVM_2021_6_a7/
LA  - ru
ID  - IVM_2021_6_a7
ER  - 
%0 Journal Article
%A S. E. Usmanov
%T The boundedness of maximal operators associated with singular surfaces
%J Izvestiâ vysših učebnyh zavedenij. Matematika
%D 2021
%P 84-94
%N 6
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IVM_2021_6_a7/
%G ru
%F IVM_2021_6_a7
S. E. Usmanov. The boundedness of maximal operators associated with singular surfaces. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 6 (2021), pp. 84-94. http://geodesic.mathdoc.fr/item/IVM_2021_6_a7/

[1] Stein E. M., “Maximal functions. Spherical means”, Proc. Nat. Acad. Sci. U.S.A., 73:7 (1976), 2174–2175 | DOI | MR | Zbl

[2] Bourgain J., “Averages in the plane convex curves and maximal operators”, J. Anal. Math., 47 (1986), 69–85 | DOI | MR | Zbl

[3] Greenleaf A., “Principal curvature and harmonic analysis”, Indiana Univ. Math. J., 30:4 (1981), 519–537 | DOI | MR | Zbl

[4] Sogge C. D., “Maximal operators associated to hypersurfaces with one nonvanishing principal curvature”, Fourier anal. and partial diff. equat., Stud. Adv. Math., CRC, Boca Raton, FL, 1995, 317–323 | MR | Zbl

[5] Sogge C. D., Stein E. M., “Averages of functions over hypersurfaces in $\mathbb{R}^{n}$”, Inventiones math., 82 (1985), 543–556 | DOI | MR | Zbl

[6] Cowling M., Mauceri G., “Inequalities for some maximal functions. II”, Trans. Amer. Math. Soc., 296:1 (1986), 341–365 | DOI | MR | Zbl

[7] Nagel A., Seeger A., Wainger S., “Averages over convex hypersurfaces”, Amer. J. Math., 115:4 (1993), 903–927 | DOI | MR | Zbl

[8] Iosevich A., Sawyer E. O., “scillatory integrals and maximal averages over homogeneous surfaces”, Duke Math. J., 82:1 (1996), 103–141 | DOI | MR | Zbl

[9] Iosevich A., Sawyer E., “Maximal Averages over surfaces”, Adv. in Math., 132:1 (1997), 46–119 | DOI | MR | Zbl

[10] Iosevich A., Sawyer E., Seeger A., “On averaging operators associated with convex hypersurfaces of finite type”, J. Anal. Math., 79 (1999), 159–187 | DOI | MR | Zbl

[11] Ikromov I. A., Kempe M., Müller D., “Damped oscillatory integrals and boundedness of maximal operators associated to mixed homogeneous hypersurfaces”, Duke Math. J., 126:3 (2005), 471–490 | DOI | MR | Zbl

[12] Ikromov I. A., Kempe M., Müller D., “Estimates for maximal functions associated to hypersurfaces in $\mathbb{R}^{3}$ and related problems of harmonic analysis”, Acta Math., 204 (2010), 151–271 | DOI | MR | Zbl

[13] Collins T., Greenleaf A., Pramanik M., “A multi-dimensional resolution of singularities with applications to analysis”, Amer. J. Math., 135:5 (2013), 1179–1252 | DOI | MR | Zbl

[14] Dubrovin B. A., Novikov S. P., Fomenko A. T., Sovremennaya geometriya, Nauka, M., 1979 | MR

[15] Bryuno A. D., Stepennaya geometriya v algebraicheskikh i differentsialnykh uravneniyakh, Nauka, M., 1998

[16] Greenblatt M., “An Elementary Coordinate-Dependent Local Resolution of Singularities and Applications”, J. Funct. Anal., 255:8 (2008), 1957–1994 | DOI | MR | Zbl