On a method for solving inelastic deformation problems of a laminated composite
Izvestiâ vysših učebnyh zavedenij. Matematika, no. 6 (2021), pp. 55-66.

Voir la notice de l'article provenant de la source Math-Net.Ru

To analyze the process of deformation of layered structural elements from inelastic materials, an approach is proposed that makes it easier to solve the problem with complex types of loading. When it is used, the package is homogenized, based on its replacement by a plate with a homogeneous structure through the thickness, the mechanical characteristics of which are determined by identification methods based on the results of numerical experiments with simple types of loading. The results of solving the formulated problem of cyclic tension of three-layer plates with linearly elastic outer layers and a viscoelastic middle layer are presented, obtained by the standard and proposed method.
Keywords: fiber reinforced plastic, viscoelastic strain, irreversible creep strain, numerical experiment
Mots-clés : identification.
@article{IVM_2021_6_a5,
     author = {V. N. Paimushin and R. A. Kayumov and S. A. Kholmogorov},
     title = {On a method for solving inelastic deformation problems of a laminated composite},
     journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika},
     pages = {55--66},
     publisher = {mathdoc},
     number = {6},
     year = {2021},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/IVM_2021_6_a5/}
}
TY  - JOUR
AU  - V. N. Paimushin
AU  - R. A. Kayumov
AU  - S. A. Kholmogorov
TI  - On a method for solving inelastic deformation problems of a laminated composite
JO  - Izvestiâ vysših učebnyh zavedenij. Matematika
PY  - 2021
SP  - 55
EP  - 66
IS  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IVM_2021_6_a5/
LA  - ru
ID  - IVM_2021_6_a5
ER  - 
%0 Journal Article
%A V. N. Paimushin
%A R. A. Kayumov
%A S. A. Kholmogorov
%T On a method for solving inelastic deformation problems of a laminated composite
%J Izvestiâ vysših učebnyh zavedenij. Matematika
%D 2021
%P 55-66
%N 6
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IVM_2021_6_a5/
%G ru
%F IVM_2021_6_a5
V. N. Paimushin; R. A. Kayumov; S. A. Kholmogorov. On a method for solving inelastic deformation problems of a laminated composite. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 6 (2021), pp. 55-66. http://geodesic.mathdoc.fr/item/IVM_2021_6_a5/

[1] Rabotnov Yu. N., Polzuchest elementov konstruktsii, Nauka, M., 1966

[2] Ilyushin A. A., Pobedrya B. E., Osnovy matematicheskoi teorii termovyazkouprugosti, Nauka, M., 1970

[3] Kristensen R., Vvedenie v mekhaniku kompozitov, Mir, M., 1982

[4] Koltunov M. A., Polzuchest i relaksatsiya, Vysshaya shkola, M., 1976

[5] Pobedrya B. E., Mekhanika kompozitsionnykh materialov, MGU, M., 1984

[6] Kachanov L. M., Teoriya polzuchesti, Gos. izd. fiz. matem. lit., M., 1960

[7] Malkin A. Ya., Isaev A. I., Reologiya: kontseptsii, metody, prilozheniya, Professiya, SPb., 2007

[8] Sheperi R. A., “Vyazkouprugoe povedenie kompozitsionnykh materialov”, Mekhanika kompozitsionnykh materialov, Kompozitsionnye materialy, 2, ed. Dzh. Sendetski, Mir, M., 1978, 102–195

[9] Malyi V. I., Trufanov N. A., “Metod kvazikonstantnykh operatorov v teorii vyazkouprugosti anizotropnykh nestareyuschikh materialov”, Izv. AN SSSR. Mekhan. tv. tela, 6 (1987), 148–154

[10] Matveenko V. P., Troyanovskii I. E., Tsaplina G. S., “Postroenie reshenii zadach teorii uprugosti v vide ryadov po stepeni uprugikh postoyannykh i ikh prilozheniya k vyazkouprugosti”, Prikl. matem. i mekhan., 60:4 (1996), 651–659 | Zbl

[11] Kovalenko A. D., Kilchinskii A. A., “O metode peremennykh modulei v zadachakh lineinoi nasledstvennoi uprugosti”, Prikl. mekhan., 6:12 (1970), 27–34 | MR

[12] Svetashkov A. A., “Time-effective moduli of a linear viscoelastic body”, Mechan. of Composite Materials, 36 (2000), 37–44 | DOI

[13] Giannadakis K., Mannberg P., Joffe R., Varna J., “The sources of inelastic behavior of Glass Fibre/Vinylester non-crimp fabric $[\pm45^{\circ}]_{s}$ laminates”, J. Reinforced Plastics and Composites, 30:12 (2011), 1015–1028 | DOI

[14] Yudin V. E., Volodin V. P., Gubanova G. N., “Osobennosti vyazkouprugogo povedeniya ugleplastikov na osnove polimernoi matritsy: modelnoe issledovanie i raschet”, Mekhan. kompozitnykh mater., 5 (1997), 656–669

[15] Peleshko V. A., “K postroeniyu opredelyayuschikh sootnoshenii vyazkouprugosti i polzuchesti pri nestatsionarnykh i slozhnykh nagruzheniyakh”, Izv. RAN. MTT, 3 (2006), 144–165

[16] Khokhlov A. V., “Dvustoronnie otsenki dlya funktsii relaksatsii lineinoi teorii nasledstvennosti cherez krivye relaksatsii pri RAMP-deformirovanii i metodiki ee identifikatsii”, Izv. RAN. MTT, 3 (2018), 81–104

[17] Dumansky A. M., Alimov M. A., Terekhin A. V., “Experiment- and computation-based identification of mechanical properties of fiber reinforced polymer composites”, J. Physics: Conference Ser., 1158:1

[18] Van Paepegem W., De Baere I., Degrieck J., “Modelling the nonlinear shear stress-strain response of glass fiber-reinforced composites. Part I: Experimental results”, Composite Sci. and Tech., 66 (2006), 1455–1464 | DOI

[19] Paimushin V. N., Kholmogorov S. A., Kayumov R. A., “Eksperimentalnye issledovaniya mekhanizmov formirovaniya ostatochnykh deformatsii voloknistykh kompozitov sloistoi struktury pri tsiklicheskom nagruzhenii”, Uchen. zap. Kazan. un-ta. Ser. Fiz.-matem. nauki, 159, no. 4, 2017, 473–492

[20] Paimushin V. N., Kholmogorov S. A., “Physical-mechanical properties of a fiber reinforced composite based on an ELUR-P carbon tape and XT-118 binder”, Mechan. of Composite Materials, 54:1 (2018), 2–12 | DOI | MR

[21] Paimushin V. N., Kayumov R. A., Kholmogorov S. A., “Deformation Features and Models of $[\pm45^{\circ}]_{2s}$ Cross-Ply Fiber-Reinforced Plastics in Tension”, Mechan. Composite Materials, 55:2 (2019), 141–154 | DOI

[22] Paimushin V. N., Kayumov R. A., Kholmogorov S. A., Shishkin V. M., “Defining Relations in Mechanics of Cross-Ply Fiber Reinforced Plastics Under Short-Term and Long-Term Monoaxial Load”, Russian Mathematics, 62:6 (2018), 75–79 | DOI | MR | Zbl

[23] Paimushin V. N., Kayumov R. A., Firsov V. A., Gazizullin R. K., Kholmogorov S. A., Shishov M. A., “Rastyazhenie i szhatie ploskikh test-obraztsov iz voloknistykh kompozitov so strukturoi $[\pm45^{\circ}]_{2s}$: chislennoe i eksperimentalnoe issledovanie formiruyuschikhsya napryazhenii i deformatsii”, Uchen. zap. Kazan. un-ta. Ser. Fiz.-matem. nauki, 161:1 (2019), 86–109 | MR

[24] Paimushin V. N., “The Analytical-Computational-Experimental Technique For Determining of The Critical Loadings And Free Oscillation Frequencies of Deforming Solid Bodies”, Dokl. Akad. Nauk, 330:1 (1993), 52–53

[25] Kayumov R. A., “Rasshirennaya zadacha identifikatsii mekhanicheskikh kharakteristik materialov po rezultatam ispytanii konstruktsii”, Izv. RAN. Mekhan. tv. tela, 2 (2004), 94–105

[26] Nordin L. O., Varna J., “Methodology for parameter identification in nonlinear viscoelastic material model”, Mechan. Time-Dependent Materials, 9:4 (2006), 259–280

[27] Grop D., Metod identifikatsii sistem, Mir, M., 1979

[28] Alfutov N. A., Zinovev P. A., Popov B. G., Raschet mnogosloinykh plastin i obolochek iz kompozitsionnykh materialov, Mir, M., 1979

[29] Grigolyuk E. I., Kulikov G. M., Mnogosloinye armirovannye obolochki, Mashinostroenie, M., 1988