Voir la notice de l'article provenant de la source Math-Net.Ru
@article{IVM_2021_6_a1, author = {I. A. Kolesnikov}, title = {Conformal mapping from the half-plane onto a circular polygon with cusps}, journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika}, pages = {11--24}, publisher = {mathdoc}, number = {6}, year = {2021}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/IVM_2021_6_a1/} }
I. A. Kolesnikov. Conformal mapping from the half-plane onto a circular polygon with cusps. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 6 (2021), pp. 11-24. http://geodesic.mathdoc.fr/item/IVM_2021_6_a1/
[1] Bereslavsky E. N., “On the application of the method of P.Ya. Polubarinova–Kochina in the theory of filtration”, J. Comput. Appl. Math., 2013, no. 1, 12–23
[2] Bereslavsky E. N., Dudina L. M., “On the movement of groundwater to an imperfect gallery in the presence of evaporation from a free surface”, Math. Model., 30:2 (2018), 99–109 | MR
[3] Tsitskishvili A. R., Effektivnye metody resheniya zadach konformnogo otobrazheniya i teorii filtratsii, Avtoref. diss. ... dok. fiz.-matem. nauk, M., 1981
[4] Tsitskishvili A., “General solution of differential Schwartz equation for conformally mapping functions of circular polugons, their connection with boundary value problems of filtration and of axially symmetric flows”, Proc. of A. Razmadze Math. Inst., 153 (2010), 1–148 | MR | Zbl
[5] Chibrikova L. I., “O kusochno-golomorfnykh resheniyakh uravnenii klassa Fuksa”, Kraevye zadachi i ikh prilozh., Izd-vo Chuvashsk. un-ta, 1986, 136–148 | MR
[6] Hakula H., Nasyrov S., Vuorinen M., Conformal moduli of symmetric circular quadrilaterals with cusp, arXiv: 1501.06765
[7] Kufarev P. P., “Ob odnom metode chislennogo opredeleniya parametrov v integrale Kristoffelya–Shvartsa”, DAN SSSR, 57:6 (1947), 535–537 | MR | Zbl
[8] I.A. Aleksandrov (red.), Trudy P. P. Kufareva: k 100-letiyu so dnya rozhdeniya, Izd-vo nauch.-tekhn. lit., Tomsk, 2009
[9] Chistyakov Yu. V., Chislennyi metod opredeleniya funktsii, konformno otobrazhayuschei krug na mnogougolniki, Diss. ... kand. fiz.-matem. nauk, Tomsk. gos. un-t im. V.V. Kuibysheva, Tomsk, 1953
[10] Gutlyanskii V.Ya., Zaidan A. O., “On conformal mapping of polygonal regions”, Ukr. Math. J., 45:11 (1993), 1669–1680 | DOI | MR | Zbl
[11] Nizamieva L. Yu., “O nakhozhdenii aktsessornykh parametrov v integrale Kristoffelya–Shvartsa”, Potrebitelskaya kooperatsiya: teoriya, metodologiya, praktika, Mater. Mezhdunar. nauch.-prakt. konf., Ros. un-t kooperatsii, Moskva, 2010, 313–319
[12] Nizamieva L. Yu., Vnutrennie i vneshnie smeshannye obratnye kraevye zadachi po parametru $x$, Diss. ... kand. fiz.-matem. nauk, Kazan, 2011
[13] Nakipov N. N., Nasyrov S. R., “Parametricheskii metod nakhozhdeniya aktsessornykh parametrov v obobschennykh integralakh Kristoffelya-Shvartsa”, Uchen. zap. Kazansk. un-ta. Ser. Fiz.-matem. nauki, 158, no. 2, 2016, 202–220 | MR
[14] Kolesnikov I. A., “Opredelenie aktsessornykh parametrov konformnykh otobrazhenii iz verkhnei poluploskosti na pryamolineinye schetnougolniki s dvoinoi simmetriei i krugovye schetnougolniki”, Vestn. Tomsk. gos. un-ta. Matem. i mekhan., 2019, no. 60, 42–60
[15] Kolesnikov I. A., “Opredelenie aktsessornykh parametrov dlya otobrazheniya na schetnougolnik”, Vestn. Tomsk. gos. un-ta. Matem. i mekhan., 2014, no. 2, 18–28
[16] Baibarin B. G., “Ob odnom chislennom sposobe opredeleniya parametrov proizvodnoi Shvartsa dlya funktsii, konformno otobrazhayuschei poluploskost na krugovye oblasti”, Tr. Tomsk. gos. un-ta, 189 (1966), 123–136 | MR
[17] Baibarin B. G., Ob odnom chislennom sposobe opredeleniya parametrov proizvodnoi Shvartsa dlya funktsii, konformno otobrazhayuschei poluploskost na krugovye oblasti, Diss. ... kand. fiz.-matem. nauk, Tomsk, 1966
[18] Aleksandrov I. A., Parametricheskie prodolzheniya v teorii odnolistnykh funktsii, Nauka, M., 1976
[19] Kolesnikov I. A., “On the problem of determining parameters in the Schwarz equation”, Issues Anal., 7:25 (2018), 50–62 | DOI | MR | Zbl
[20] Kolesnikov I. A., “Nakhozhdenie parametrov konformnogo otobrazheniya iz poluploskosti na krugovoi mnogougolnik”, Itogi nauki i tekhn. Ser. Sovrem. matem. i ee prilozh. Temat. obz., 175, 2020, 56–68
[21] Goluzin G. M., Geometricheskaya teoriya funktsii kompleksnogo peremennogo, Nauka. Fizmatlit, M., 1966 | MR
[22] Golubev V. V., Lektsii po analiticheskoi teorii differentsialnykh uravnenii, Gostekhizdat, M., 1950 | MR
[23] Popova N. V., “Zavisimost mezhdu uravneniem Levnera i uravneniem $\frac{dw}{dt}=\frac{1}{w-\lambda(t)}$”, Izv. AN BSSR, 1954, no. 6, 97–98
[24] Kufarev P. P., Sobolev V. V., Sporysheva L. V., “Ob odnom metode issledovaniya ekstremalnykh zadach dlya funktsii, odnolistnykh v poluploskosti”, Vopr. geometrichesk. teorii funktsii, Tr. Tomsk. un-ta, 200, no. 5, 1968, 142–164 | Zbl
[25] Lawler G. F., Conformally Invariant Processes in the Plane, American Math. Soc., Providence, RI, 2005 | MR | Zbl
[26] Del Monaco A., Gumenyuk P., “Chordal Loewner Equation”, Complex Anal. and Dynamical Systems VI, v. 2, Contemp. Math., 667, Amer. Math. Soc., Providence, RI, 2016, 63–77 | DOI | MR | Zbl
[27] Lau K.-S., Wu H.-H., “On tangential slit solution of the Loewner equation”, Ann. Acad. Sci. Fenn. Math., 41 (2016), 681–691 | DOI | MR | Zbl
[28] Prokhorov D., Vasil'ev A., “Singular and tangent slit solutions to the Lowner equation”, Anal. and Math. Physics, Trends Math., Birkhauser, 2009, 455–463 | MR | Zbl
[29] Prokhorov D. V., Samsonova K. A., “Integraly uravneniya Levnera so stepennoi upravlyayuschei funktsiei”, Izv. Saratovsk. un-ta Nov. ser. Ser. Matem. Mekhan. Informatika, 13:4–2 (2013), 98–108 | Zbl
[30] Wu H.-H., Jiang Y.-P., Dong X.-H., “Perturbation of the tangential slit by conformal maps”, J. Math. Anal. Appl., 464:2 (2018), 1107–1118 | DOI | MR | Zbl