Formula of Kirchhoff type for mixed problem
Izvestiâ vysših učebnyh zavedenij. Matematika, no. 6 (2021), pp. 3-10.

Voir la notice de l'article provenant de la source Math-Net.Ru

The initial-boundary value problem for the wave equation is considered in three-dimensional half-space. The environment oscillation process is initiated by the initial data and the boundary mode. The theorem is proved for existence and uniqueness of the solution which is presented in the form of the generalized Kirchhoff formula. This work can be considered as a generalization of the classical result for equations of oscillations of a semi-bounded string to the three-dimensional case.
Keywords: wave equation, Cauchy problem, formula Kirchhoff, Duhamel integral.
@article{IVM_2021_6_a0,
     author = {D. S. Anikonov and D. S. Konovalova},
     title = {Formula of {Kirchhoff} type for mixed problem},
     journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika},
     pages = {3--10},
     publisher = {mathdoc},
     number = {6},
     year = {2021},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/IVM_2021_6_a0/}
}
TY  - JOUR
AU  - D. S. Anikonov
AU  - D. S. Konovalova
TI  - Formula of Kirchhoff type for mixed problem
JO  - Izvestiâ vysših učebnyh zavedenij. Matematika
PY  - 2021
SP  - 3
EP  - 10
IS  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IVM_2021_6_a0/
LA  - ru
ID  - IVM_2021_6_a0
ER  - 
%0 Journal Article
%A D. S. Anikonov
%A D. S. Konovalova
%T Formula of Kirchhoff type for mixed problem
%J Izvestiâ vysših učebnyh zavedenij. Matematika
%D 2021
%P 3-10
%N 6
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IVM_2021_6_a0/
%G ru
%F IVM_2021_6_a0
D. S. Anikonov; D. S. Konovalova. Formula of Kirchhoff type for mixed problem. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 6 (2021), pp. 3-10. http://geodesic.mathdoc.fr/item/IVM_2021_6_a0/

[1] Ilin V. A., Kuleshov A. A., “O nekotorykh svoistvakh obobschennykh reshenii volnovogo uravneniya iz klassov $L_p$ $W_p^l$ pri $p\geq 1$p”, Differents. uravneniya, 48:11 (2012), 1493–1500

[2] Ilin V. A., “Formula tipa Dalambera dlya poperechnykh kolebanii beskonechnogo sterzhnya, sostoyaschego iz dvukh uchastkov raznoi plotnosti”, DAN, 427:5 (2009), 609–611

[3] Ilin V. A., Kuleshov A. A., “Ob ekvivalentnosti dvukh opredelenii obobschennogo iz klassa $L_p$ resheniya smeshannoi zadachi dlya volnovogo uravneniya”, Tr. MIAN, 284, 2014, 163–168

[4] Petrova G., Popov B., “Linear transport equations with discontinuous coefficients”, Communications in Partial Diff. Equat., 24:9–10 (1999), 1849–1873 | DOI | MR | Zbl

[5] Bouchut F., Jame F., “One-dimensional transport equations with discontinuous coefficients”, J. Nonlinear Anal., Theory, Methods and Appl., 32:7 (1998), 891–933 | DOI | MR | Zbl

[6] Kulikovskii A. G., Sveshnikova E. I., Chugainova A. P., Matematicheskie metody izucheniya razryvnykh reshenii nelineinykh giperbolicheskikh sistem uravnenii, Lekts. kursy NOTs, 16, Izd. MIAN, M., 2010

[7] Tadmor E., “Local error estimates for discontinuous solutions of nonlinear hyperbolic equations”, SIAM J. Numer. Anal., 28 (1991), 891–906 | DOI | MR | Zbl

[8] Tikhonov A. N., Samarskii A. A., Uravneniya matematicheskoi fiziki, Nauka, M., 1977 | MR