Voir la notice de l'article provenant de la source Math-Net.Ru
@article{IVM_2021_6_a0, author = {D. S. Anikonov and D. S. Konovalova}, title = {Formula of {Kirchhoff} type for mixed problem}, journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika}, pages = {3--10}, publisher = {mathdoc}, number = {6}, year = {2021}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/IVM_2021_6_a0/} }
D. S. Anikonov; D. S. Konovalova. Formula of Kirchhoff type for mixed problem. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 6 (2021), pp. 3-10. http://geodesic.mathdoc.fr/item/IVM_2021_6_a0/
[1] Ilin V. A., Kuleshov A. A., “O nekotorykh svoistvakh obobschennykh reshenii volnovogo uravneniya iz klassov $L_p$ $W_p^l$ pri $p\geq 1$p”, Differents. uravneniya, 48:11 (2012), 1493–1500
[2] Ilin V. A., “Formula tipa Dalambera dlya poperechnykh kolebanii beskonechnogo sterzhnya, sostoyaschego iz dvukh uchastkov raznoi plotnosti”, DAN, 427:5 (2009), 609–611
[3] Ilin V. A., Kuleshov A. A., “Ob ekvivalentnosti dvukh opredelenii obobschennogo iz klassa $L_p$ resheniya smeshannoi zadachi dlya volnovogo uravneniya”, Tr. MIAN, 284, 2014, 163–168
[4] Petrova G., Popov B., “Linear transport equations with discontinuous coefficients”, Communications in Partial Diff. Equat., 24:9–10 (1999), 1849–1873 | DOI | MR | Zbl
[5] Bouchut F., Jame F., “One-dimensional transport equations with discontinuous coefficients”, J. Nonlinear Anal., Theory, Methods and Appl., 32:7 (1998), 891–933 | DOI | MR | Zbl
[6] Kulikovskii A. G., Sveshnikova E. I., Chugainova A. P., Matematicheskie metody izucheniya razryvnykh reshenii nelineinykh giperbolicheskikh sistem uravnenii, Lekts. kursy NOTs, 16, Izd. MIAN, M., 2010
[7] Tadmor E., “Local error estimates for discontinuous solutions of nonlinear hyperbolic equations”, SIAM J. Numer. Anal., 28 (1991), 891–906 | DOI | MR | Zbl
[8] Tikhonov A. N., Samarskii A. A., Uravneniya matematicheskoi fiziki, Nauka, M., 1977 | MR