On the relative fixed point index for a class of noncompact multivalued maps
Izvestiâ vysših učebnyh zavedenij. Matematika, no. 5 (2021), pp. 64-77.

Voir la notice de l'article provenant de la source Math-Net.Ru

In the paper we define a topological characteristic, the fixed point index with respect to a convex closed subset of a Banach space for a class of completely fundamentally restrictible multivalued maps which can be represented as a composition of maps with aspheric values. This class includes, in particular, maps which are condensing with respect to a monotone nonsingular measure of noncompactness. Maps of this type naturally arise while the study of nonlinear systems with impulse effects. Applications of the index to some fixed point theorems are considered.
Keywords: fixed point, fixed point index, $J^c$-map, measure of noncompactness, condensing map, fundamentally restrictible map.
@article{IVM_2021_5_a8,
     author = {V. V. Obukhovskii and S. V. Kornev and E. N. Getmanova},
     title = {On the relative fixed point index for a class of noncompact multivalued maps},
     journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika},
     pages = {64--77},
     publisher = {mathdoc},
     number = {5},
     year = {2021},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/IVM_2021_5_a8/}
}
TY  - JOUR
AU  - V. V. Obukhovskii
AU  - S. V. Kornev
AU  - E. N. Getmanova
TI  - On the relative fixed point index for a class of noncompact multivalued maps
JO  - Izvestiâ vysših učebnyh zavedenij. Matematika
PY  - 2021
SP  - 64
EP  - 77
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IVM_2021_5_a8/
LA  - ru
ID  - IVM_2021_5_a8
ER  - 
%0 Journal Article
%A V. V. Obukhovskii
%A S. V. Kornev
%A E. N. Getmanova
%T On the relative fixed point index for a class of noncompact multivalued maps
%J Izvestiâ vysših učebnyh zavedenij. Matematika
%D 2021
%P 64-77
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IVM_2021_5_a8/
%G ru
%F IVM_2021_5_a8
V. V. Obukhovskii; S. V. Kornev; E. N. Getmanova. On the relative fixed point index for a class of noncompact multivalued maps. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 5 (2021), pp. 64-77. http://geodesic.mathdoc.fr/item/IVM_2021_5_a8/

[1] Borisovich Yu.G., “Ob odnom primenenii ponyatiya vrascheniya vektornogo polya”, Dokl. AN SSSR, 153:1 (1963), 12–15

[2] Borisovich Yu.G., “Ob otnositelnom vraschenii kompaktnykh vektornykh polei v lineinykh prostranstvakh”, Tr. seminara po funkts. analizu. Voronezhsk. un-t, 12, 1969, 3–27 | Zbl

[3] Borisovich Yu.G., Sapronov Yu.I., “K topologicheskoi teorii kompaktno suzhaemykh otobrazhenii”, Tr. seminara po funkts. analizu. Voronezhsk. un-t, 12, 1969, 43–68 | Zbl

[4] Sadovskii B.N., “Predelno kompaktnye i uplotnyayuschie operatory”, Uspekhi matem. nauk, 27:1(163) (1972), 81–146 | MR | Zbl

[5] Borisovich Yu.G., Gelman B.D., Myshkis A.D., Obukhovskii V.V., “Topologicheskie metody v teorii nepodvizhnykh tochek mnogoznachnykh otobrazhenii”, Usp. matem. nauk, 35:1 (1980), 59–126 | MR | Zbl

[6] Kamenskii M., Obukhovskii V., Zecca P., Condensing Multivalued Maps and Semilinear Differential Inclusions in Banach Spaces, de Gruyter Ser. in Nonlinear Anal. and Appl., 7, Walter de Gruyter Co., Berlin–New York, 2001 | MR

[7] Liou Y.C., Obukhovskii V., Yao J.C., “Application of a coincidence index to some classes of impulsive control systems”, Nonlinear Anal., 69:12 (2008), 4392–4411 | DOI | MR | Zbl

[8] Obukhovskii V.V., Kornev S.V., Getmanova E.N., “O topologicheskikh kharakteristikakh dlya nekotorykh klassov mnogoznachnykh otobrazhenii”, Chebyshevsk. sb., 21:2 (2020), 291–309

[9] Bader R., Kryszewski W., “Fixed-point index for compositions of set-valued maps with proximally $\infty$-connected values on arbitrary ANR's”, Set-Valued Anal., 2 (1994), 459–480 | DOI | MR | Zbl

[10] Borisovich Yu.G., Gelman B.D., Myshkis A.D., Obukhovskii V.V., Vvedenie v teoriyu mnogoznachnykh otobrazhenii i differentsialnykh vklyuchenii, 2-e izd., Librokom, M., 2011 | MR

[11] Górniewicz L., Topological Fixed Point Theory of Multivalued Mappings, Topological Fixed Point Theory and Its Appl., 4, Second edition, Springer, Dordrecht, 2006 | MR

[12] Hu S., Papageorgiou N., Handbook of multivalued analysis, v. I, Theory, Kluwer, Dordrecht, 1997 | MR | Zbl

[13] Myshkis A.D., “Obobscheniya teoremy o tochke pokoya dinamicheskoi sistemy vnutri zamknutoi traektorii”, Matem. sb., 34 (1954), 525–540 | Zbl

[14] Borsuk K., Teoriya retraktov, Mir, M., 1971

[15] Girolo J., “Approximating compact sets in normed linear spaces”, Pacific J. Math., 98 (1982), 81–89 | DOI | MR | Zbl

[16] Hyman D.M., “On decreasing sequences of compact absolute retracts”, Fund. Math., 64 (1969), 91–97 | DOI | MR | Zbl

[17] Górniewicz L., Granas A., Kryszewski W., “On the homotopy method in the fixed point index theory of multi-valued mappings of compact absolute neighborhood retracts”, J. Math. Anal. Appl., 161 (1991), 457–473 | DOI | MR