Voir la notice de l'article provenant de la source Math-Net.Ru
@article{IVM_2021_5_a6, author = {V. G. Zvyagin and V. P. Orlov}, title = {On a apriori estimates of weak solutions of one nongomogeneous problem of dynamics of viscoelastic medium with memory}, journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika}, pages = {43--54}, publisher = {mathdoc}, number = {5}, year = {2021}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/IVM_2021_5_a6/} }
TY - JOUR AU - V. G. Zvyagin AU - V. P. Orlov TI - On a apriori estimates of weak solutions of one nongomogeneous problem of dynamics of viscoelastic medium with memory JO - Izvestiâ vysših učebnyh zavedenij. Matematika PY - 2021 SP - 43 EP - 54 IS - 5 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/IVM_2021_5_a6/ LA - ru ID - IVM_2021_5_a6 ER -
%0 Journal Article %A V. G. Zvyagin %A V. P. Orlov %T On a apriori estimates of weak solutions of one nongomogeneous problem of dynamics of viscoelastic medium with memory %J Izvestiâ vysših učebnyh zavedenij. Matematika %D 2021 %P 43-54 %N 5 %I mathdoc %U http://geodesic.mathdoc.fr/item/IVM_2021_5_a6/ %G ru %F IVM_2021_5_a6
V. G. Zvyagin; V. P. Orlov. On a apriori estimates of weak solutions of one nongomogeneous problem of dynamics of viscoelastic medium with memory. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 5 (2021), pp. 43-54. http://geodesic.mathdoc.fr/item/IVM_2021_5_a6/
[1] Zvyagin V.G., Dmitrienko V.T., “O slabykh resheniyakh nachalno-kraevoi zadachi dlya regulyarizovannoi modeli vyazkouprugoi zhidkosti”, Differents. uravneniya, 38:12 (2002), 1633–1645 | MR | Zbl
[2] Zvyagin V.G., Orlov V.P., “O slaboi razreshimosti zadachi vyazkouprugosti s pamyatyu”, Differents. uravneniya, 53:2 (2017), 215–220 | Zbl
[3] Zvyagin V.G., Dmitrienko V.T., “O silnykh resheniyakh nachalno-kraevoi zadachi dlya regulyarizovannoi modeli neszhimaemoi vyazkouprugoi zhidkosti”, Izv. vuzov. Matem., 2004, no. 9, 24–40 | Zbl
[4] Orlov V.P., “Ob odnoi neodnorodnoi regulyarizovannoi zadache dinamiki vyazkouprugoi sredy”, Izv. vuzov. Matem., 2012, no. 8, 58–64 | Zbl
[5] Temam R., Uravnenie Nave–Stoksa. Teoriya i chislennyi analiz, Mir, M., 1987
[6] Krein S.G., Funktsionalnyi analiz, Nauka, M., 1972 | MR
[7] Ladyzhenskaya O.A., Matematicheskie voprosy dinamiki vyazkoi neszhimaemoi zhidkosti, Nauka, M., 1970
[8] DiPerna R.J., Lions P.L., “Ordinary differential equations, transport theory and Sobolev spaces”, Invent. Math., 98 (1989), 511–547 | DOI | MR | Zbl
[9] Ambrosio L., “Transport equation and Cauchy problem for BV vector fields”, Invent. Math., 158 (2004), 227–260 | DOI | MR | Zbl
[10] Crippa G., de Lellis C., “Estimates and regularity results for the diPerna–Lions flow”, J. Reine Angew. Math., 616 (2008), 15–46 | MR | Zbl
[11] Bibikov Yu.N., Obschii kurs obyknovennykh differentsialnykh uravnenii, Izd-vo Leningradsk. un-ta, Leningrad, 1981 | MR