On a apriori estimates of weak solutions of one nongomogeneous problem of dynamics of viscoelastic medium with memory
Izvestiâ vysših učebnyh zavedenij. Matematika, no. 5 (2021), pp. 43-54.

Voir la notice de l'article provenant de la source Math-Net.Ru

Apriori estimate of weak solutions to a problem of dynamics of viscoelastic continuous medium with memory along trajectories of velocity field and nonhomogenous condition on the boundary is established.
Keywords: viscoelastic continuous medium, apriori estimates, weak solution, regular Lagrangean flow.
@article{IVM_2021_5_a6,
     author = {V. G. Zvyagin and V. P. Orlov},
     title = {On a apriori estimates of weak solutions of one nongomogeneous problem of dynamics of viscoelastic medium with memory},
     journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika},
     pages = {43--54},
     publisher = {mathdoc},
     number = {5},
     year = {2021},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/IVM_2021_5_a6/}
}
TY  - JOUR
AU  - V. G. Zvyagin
AU  - V. P. Orlov
TI  - On a apriori estimates of weak solutions of one nongomogeneous problem of dynamics of viscoelastic medium with memory
JO  - Izvestiâ vysših učebnyh zavedenij. Matematika
PY  - 2021
SP  - 43
EP  - 54
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IVM_2021_5_a6/
LA  - ru
ID  - IVM_2021_5_a6
ER  - 
%0 Journal Article
%A V. G. Zvyagin
%A V. P. Orlov
%T On a apriori estimates of weak solutions of one nongomogeneous problem of dynamics of viscoelastic medium with memory
%J Izvestiâ vysših učebnyh zavedenij. Matematika
%D 2021
%P 43-54
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IVM_2021_5_a6/
%G ru
%F IVM_2021_5_a6
V. G. Zvyagin; V. P. Orlov. On a apriori estimates of weak solutions of one nongomogeneous problem of dynamics of viscoelastic medium with memory. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 5 (2021), pp. 43-54. http://geodesic.mathdoc.fr/item/IVM_2021_5_a6/

[1] Zvyagin V.G., Dmitrienko V.T., “O slabykh resheniyakh nachalno-kraevoi zadachi dlya regulyarizovannoi modeli vyazkouprugoi zhidkosti”, Differents. uravneniya, 38:12 (2002), 1633–1645 | MR | Zbl

[2] Zvyagin V.G., Orlov V.P., “O slaboi razreshimosti zadachi vyazkouprugosti s pamyatyu”, Differents. uravneniya, 53:2 (2017), 215–220 | Zbl

[3] Zvyagin V.G., Dmitrienko V.T., “O silnykh resheniyakh nachalno-kraevoi zadachi dlya regulyarizovannoi modeli neszhimaemoi vyazkouprugoi zhidkosti”, Izv. vuzov. Matem., 2004, no. 9, 24–40 | Zbl

[4] Orlov V.P., “Ob odnoi neodnorodnoi regulyarizovannoi zadache dinamiki vyazkouprugoi sredy”, Izv. vuzov. Matem., 2012, no. 8, 58–64 | Zbl

[5] Temam R., Uravnenie Nave–Stoksa. Teoriya i chislennyi analiz, Mir, M., 1987

[6] Krein S.G., Funktsionalnyi analiz, Nauka, M., 1972 | MR

[7] Ladyzhenskaya O.A., Matematicheskie voprosy dinamiki vyazkoi neszhimaemoi zhidkosti, Nauka, M., 1970

[8] DiPerna R.J., Lions P.L., “Ordinary differential equations, transport theory and Sobolev spaces”, Invent. Math., 98 (1989), 511–547 | DOI | MR | Zbl

[9] Ambrosio L., “Transport equation and Cauchy problem for BV vector fields”, Invent. Math., 158 (2004), 227–260 | DOI | MR | Zbl

[10] Crippa G., de Lellis C., “Estimates and regularity results for the diPerna–Lions flow”, J. Reine Angew. Math., 616 (2008), 15–46 | MR | Zbl

[11] Bibikov Yu.N., Obschii kurs obyknovennykh differentsialnykh uravnenii, Izd-vo Leningradsk. un-ta, Leningrad, 1981 | MR