On some topological characteristics of harmonic polynomials
Izvestiâ vysših učebnyh zavedenij. Matematika, no. 5 (2021), pp. 23-32.

Voir la notice de l'article provenant de la source Math-Net.Ru

The paper studies the geometric and topological properties of harmonic homogeneous polynomials. Based on the study of the zero-level lines of polynomials on the unit sphere, the concept of topological type for such polynomials is introduced. Topological types are described for harmonic polynomials up to the third degree inclusive. In the case of complex-valued harmonic polynomials, the distributions are investigated of their critical points in regions on the sphere in which their real and imaginary parts have constant sign. It is shown that when passing from real to complex polynomials, the number of such regions increases and the maximal values of the square of the modulus of the harmonic polynomial decrease. Using the Euler formula, conclusions are drawn about the number of critical points of the functions under study.
Keywords: harmonic function, homogeneous polynomial, critical point, level line
Mots-clés : Euler's formula.
@article{IVM_2021_5_a4,
     author = {B. M. Darinskii and A. V. Loboda and D. S. Saiko},
     title = {On some topological characteristics of harmonic polynomials},
     journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika},
     pages = {23--32},
     publisher = {mathdoc},
     number = {5},
     year = {2021},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/IVM_2021_5_a4/}
}
TY  - JOUR
AU  - B. M. Darinskii
AU  - A. V. Loboda
AU  - D. S. Saiko
TI  - On some topological characteristics of harmonic polynomials
JO  - Izvestiâ vysših učebnyh zavedenij. Matematika
PY  - 2021
SP  - 23
EP  - 32
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IVM_2021_5_a4/
LA  - ru
ID  - IVM_2021_5_a4
ER  - 
%0 Journal Article
%A B. M. Darinskii
%A A. V. Loboda
%A D. S. Saiko
%T On some topological characteristics of harmonic polynomials
%J Izvestiâ vysših učebnyh zavedenij. Matematika
%D 2021
%P 23-32
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IVM_2021_5_a4/
%G ru
%F IVM_2021_5_a4
B. M. Darinskii; A. V. Loboda; D. S. Saiko. On some topological characteristics of harmonic polynomials. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 5 (2021), pp. 23-32. http://geodesic.mathdoc.fr/item/IVM_2021_5_a4/

[1] Rabotnov Yu.N., Mekhanika deformiruemogo tverdogo tela, Nauka, M., 1988

[2] Lotov K.V., Fizika sploshnykh sred, In-t kompyut. issledov, M.–Izhevsk, 2002

[3] Feinman R., Leiton R., Sends M., Feinmanovskie lektsii po fizike, v. 7, Fizika sploshnykh sred, Mir, M., 1967

[4] Landau L.D., Lifshits E.M., Teoreticheskaya fizika, v. VIII, Elektrodinamika sploshnykh sred, Nauka, M., 1982 | MR

[5] Landau L.D., Lifshits E.M., Teoreticheskaya fizika, v. III, Kvantovaya mekhanika, Fizmatlit, 2008

[6] Borisovich Yu.G., Darinskii B.M., Kunakovskaya O.V., “Primenenie topologicheskikh metodov dlya otsenki chisla prodolnykh uprugikh voln v kristallakh”, Teor. i matem. fizika, 94:1 (1993), 146–152 | MR | Zbl

[7] Eastwood M., Ezhov V., “Homogeneous Hypersurfaces with Isotropy in Affine Four-Space”, Tr. MIAN, 235, 2001, 57–70 | MR | Zbl

[8] Vorotnikov D.A., Darinskii B.M., Zvyagin V.G., “Topologicheskii podkhod k issledovaniyu akusticheskikh osei v kristallakh”, Kristallografiya, 51:1 (2006), 112–117

[9] Darinskii B.M., Efanova N.D., Kandrashin V.Yu., Teoriya atoma vodoroda v dekartovoi sisteme koordinat, VGU, Voronezh, 2015

[10] Kraft Kh., Geometricheskie metody v teorii invariantov, Mir, M., 1987