On topological properties of the set of solutions of operator inclusions with a multi-valued Lipschitz right-hand side
Izvestiâ vysših učebnyh zavedenij. Matematika, no. 5 (2021), pp. 11-15.

Voir la notice de l'article provenant de la source Math-Net.Ru

This paper is devoted to the study of the topological dimension of the set of solutions of the operator inclusion of the form $A(x)\in\lambda F(x)$, where $A$ is a bounded linear surjective operator, and $F$ is a multi-valued Lipschitz map with closed convex images. The resulting theorem establishes a connection between the dimension of the kernel of the operator $A$ and the dimension of the set of solutions of this inclusion.
Keywords: multivalued mapping, Hausdorff metric, contractive mapping, surjective operator.
@article{IVM_2021_5_a2,
     author = {B. D. Gel'man},
     title = {On topological properties of the set of solutions of operator inclusions with a multi-valued {Lipschitz} right-hand side},
     journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika},
     pages = {11--15},
     publisher = {mathdoc},
     number = {5},
     year = {2021},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/IVM_2021_5_a2/}
}
TY  - JOUR
AU  - B. D. Gel'man
TI  - On topological properties of the set of solutions of operator inclusions with a multi-valued Lipschitz right-hand side
JO  - Izvestiâ vysših učebnyh zavedenij. Matematika
PY  - 2021
SP  - 11
EP  - 15
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IVM_2021_5_a2/
LA  - ru
ID  - IVM_2021_5_a2
ER  - 
%0 Journal Article
%A B. D. Gel'man
%T On topological properties of the set of solutions of operator inclusions with a multi-valued Lipschitz right-hand side
%J Izvestiâ vysših učebnyh zavedenij. Matematika
%D 2021
%P 11-15
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IVM_2021_5_a2/
%G ru
%F IVM_2021_5_a2
B. D. Gel'man. On topological properties of the set of solutions of operator inclusions with a multi-valued Lipschitz right-hand side. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 5 (2021), pp. 11-15. http://geodesic.mathdoc.fr/item/IVM_2021_5_a2/

[1] Ricceri B., “On the topological dimension of the solution set of a class of nonlinear equations”, C.R. Acad. Sci., Paris, 325 (1997), 65–70 | DOI | MR | Zbl

[2] Gelman B.D., “Ob odnom klasse operatornykh uravnenii”, Matem. zametki, 70:4 (2001), 544–552 | Zbl

[3] Gelman B.D., “Operatornye uravneniya i zadacha Koshi dlya vyrozhdennykh differentsialnykh uravnenii”, Vestn. VGU, Ser. Fiz., Matem., 2 (2007), 86–91

[4] Nadler S.B., “Multi-valued contraction mappings”, Pasif. J. Math., 30 (1969), 475–488 | DOI | MR | Zbl

[5] Borisovich Yu.G., Gelman B.D., Myshkis A.D., Obukhovskii V.V., Vvedenie v teoriyu mnogoznachnykh otobrazhenii i differentsialnykh vklyuchenii, Kn. dom«LIBROKOM», M., 2016 | MR

[6] Gelman B.D., “Mnogoznachnye szhimayuschie otobrazheniya i ikh prilozheniya”, Vestn. VGU, Ser. Fiz., Matem., 1 (2009), 74–86

[7] Saint Raymond J., “Multivalued contractions”, Set-Valued Anal., 2 (1994), 559–571 | DOI | MR | Zbl

[8] Ricceri B., “Une propriété topologique de l'ensemble des points fixes d'une contraction multivoque á valeurs convexes”, Atti Accad. Nas. Lincei Cl. Sci. Fis. Mat. Natur. Rend. Lincei (9) Mat. Appl., 81 (1987), 283–286 | MR | Zbl

[9] Arutyunov A.V., Gelman B.D., “Nekotorye svoistva mnozhestva tochek sovpadeniya”, Matem. sb., 206:3 (2015), 35–56 | MR | Zbl