Some properties of functional-differential operators with involution $\nu(x)=1-x$ and their applications
Izvestiâ vysših učebnyh zavedenij. Matematika, no. 5 (2021), pp. 89-97.

Voir la notice de l'article provenant de la source Math-Net.Ru

Functional-differential operators with involution $\nu(x)=1-x$ are related to integral operators whose kernels suffer discontinuities on the lines $t=x$ and $t=1-x$, and to Dirac and Sturm-Liouville operators. They have found their application in the study of these operators, and in various applications. This paper reviews studies of the spectral properties of such operators with involution and their applications in problems on geometric graphs, in the study of Dirac systems, and in the justification of the Fourier method in mixed problems for partial differential equations.
Keywords: Functional-differential operator, involution, spectral theory, Dirac operator, graph, Fourier method.
@article{IVM_2021_5_a10,
     author = {M. Sh. Burlutskaya},
     title = {Some properties of functional-differential operators with involution $\nu(x)=1-x$ and their applications},
     journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika},
     pages = {89--97},
     publisher = {mathdoc},
     number = {5},
     year = {2021},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/IVM_2021_5_a10/}
}
TY  - JOUR
AU  - M. Sh. Burlutskaya
TI  - Some properties of functional-differential operators with involution $\nu(x)=1-x$ and their applications
JO  - Izvestiâ vysših učebnyh zavedenij. Matematika
PY  - 2021
SP  - 89
EP  - 97
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IVM_2021_5_a10/
LA  - ru
ID  - IVM_2021_5_a10
ER  - 
%0 Journal Article
%A M. Sh. Burlutskaya
%T Some properties of functional-differential operators with involution $\nu(x)=1-x$ and their applications
%J Izvestiâ vysših učebnyh zavedenij. Matematika
%D 2021
%P 89-97
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IVM_2021_5_a10/
%G ru
%F IVM_2021_5_a10
M. Sh. Burlutskaya. Some properties of functional-differential operators with involution $\nu(x)=1-x$ and their applications. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 5 (2021), pp. 89-97. http://geodesic.mathdoc.fr/item/IVM_2021_5_a10/

[1] Babbage Ch., “An essay towards the calculus of functions”, Philosophical transactions of the Royal Soc. of London, 11 (1816), 179–226

[2] Litvinchuk G.S., Kraevye zadachi i singulyarnye integralnye uravneniya so sdvigom, Nauka, M., 1977

[3] Karapetyants N.K., Samko S.G., Uravneniya s involyutivnymi operatorami i ikh prilozheniya, Rostovsk. gos. un-t, Rostov-na-Donu, 1988 | MR

[4] Viner I.Ya., “Differentsialnye uravneniya s involyutsiyami”, Differents. uravneniya, 5:6 (1969), 1131–1137 | MR | Zbl

[5] Wiener J., Generalized solutions of functional-differential equations, World Sci., 1993 | MR | Zbl

[6] Andreev A.A., “Ob analogakh klassicheskikh kraevykh zadach dlya odnogo differentsialnogo uravneniya vtorogo poryadka s otklonyayuschimsya argumentom”, Differents. uravneniya, 40:5 (2004), 1126–1128 | Zbl

[7] Andreev A.A., Saushkin I.N., “Ob analoge zadachi Trikomi dlya odnogo modelnogo uravneniya s involyutivnym otkloneniem v beskonechnoi oblasti”, Vestn. Samarsk. gos. tekh. un-ta. Ser.: Fiz.-matem. nauki, 2005, no. 34, 10–16

[8] Platonov S.S., “Razlozhenie po sobstvennym funktsiyam dlya nekotorykh funktsionalno-differentsialnykh operatorov”, Tr. Petrozavodsk. gos. un-ta. Ser. matem., 2004, no. 11, 15–35

[9] Watkins W.T., “Asymptotic properties of differential equations with involutions”, Int. J. Math. Math. Sci., 44:4 (2008), 485 | MR | Zbl

[10] Kopzhassarova A., Sarsenbi A., “Basis properties of eigenfunctions of second-order differential operators with involution”, Abstract and Appl. Anal., 2012 (2012), 576843 | MR | Zbl

[11] Ashyralyev A., Sarsenbi A., “Well-posedness of an elliptic equation with involution”, Electronic J. of Diff. Equat., 2015:284 (2015), 1–8 | MR

[12] Kritskov L.V., Sarsenbi A.M., “Spectral properties of a nonlocal problem for a second-order differential equation with an involution”, Diff. Equat., 51:8 (2015), 984–990 | DOI | MR | Zbl

[13] Kritskov L.V., Sarsenbi A.M., “Basicity in $L_p$ of root functions for differential equations with involution”, Electronic J. of Diff. Equat., 273 (2015), 1–9 | MR

[14] Kritskov L.V., Sarsenbi A.M., “Riesz basis property of system of root functions of second-order differential operator with involution”, Diff. Equat., 53:1 (2017), 33–46 | DOI | MR | Zbl

[15] Tojo F.A.F., Cabada A., “Existence results for a linear equation with reflection, non-constant coefficient and periodic boundary conditions”, J. Math. Anal. Appl., 412 (2014), 529–546 | DOI | MR | Zbl

[16] Cabada A., Tojo F.A.F., Differential Equations with Involutions, Atlantis Press, N.Y., 2015 | MR | Zbl

[17] Baskakov A.G., Krishtal I.A., Romanova E.Yu., “Spectral analysis of a differential operator with an involution”, J. Evolut. Equat., 17 (2017), 669–684 | DOI | MR | Zbl

[18] Baskakov A.G., Uskova N.B., “Fourier method for first order differential equations with involution and groups of operators”, Ufa Math. J., 10:3 (2018), 11–34 | DOI | MR | Zbl

[19] Vladykina V.E., Shkalikov A.A., “Regular Ordinary Differential Operators with Involution”, Math. Notes, 106:5 (2019), 674–687 | DOI | MR | Zbl

[20] Burlutskaya M.Sh., “O nekotorykh svoistvakh differentsialnykh uravnenii i smeshannykh zadach s involyutsiei”, Vestn. Voronezhsk. gos. un-ta. Ser.: Fiz. Matem., 2019, no. 1, 91–100 | MR | Zbl

[21] Burlutskaya M.Sh., Kurdyumov V.P., Lukonina A.S., Khromov A.P., “Funktsionalno-differentsialnyi operator s involyutsiei”, DAN, 414:4 (2007), 1309–1312

[22] Khromov A.P., “Ob obraschenii integralnykh operatorov s yadrami, razryvnymi na diagonalyakh”, Matem. zametki, 64:6 (1998), 932–949

[23] Kornev V.V., Khromov A.P., “Equiconvergence of expansions in eigenfunctions of integral operators with kernels that can have discontinuities on the diagonals”, Sb. Math., 192:10 (2001), 1451–1469 | DOI | MR | Zbl

[24] Khromov A.P., “Teorema ravnoskhodimosti dlya integralnogo operatora s peremennym verkhnim predelom integrirovaniya”, Metricheskaya teoriya funktsii i smezhnye voprosy analiza, sb. statei, Izd-vo AFTs, M., 1999, 255–266 | MR

[25] Kurdyumov V.P., Khromov A.P., “Riesz Bases of Eigenfunctions of an Integral Operator with a Variable Limit of Integration”, Math. Notes, 76:1 (2004), 90–102 | DOI | MR | Zbl

[26] Kornev V.V., Khromov A.P., “Absolyutnaya skhodimost razlozhenii po sobstvennym funktsiyam integralnogo operatora s peremennym predelom integrirovaniya”, Izv. RAN. Ser. matem., 69:4 (2005), 59–74 | MR | Zbl

[27] Kornev V.V., Khromov A.P., “Operator integrirovaniya s involyutsiei v verkhnem predele integrirovaniya”, DAN, 422:4 (2008), 459–462 | Zbl

[28] Khromov A.P., “Integral operators with kernels that are discontinuous on broken lines”, Sb. Math., 197:11 (2006), 1669–1696 | DOI | MR | Zbl

[29] Kuvardina L.P., Khromov A.P., “O ravnoskhodimosti razlozhenii po sobstvennym i prisoedinennym funktsiyam integralnogo operatora s involyutsiei”, Izv. vuzov. Matem., 2008, no. 5, 67–76 | MR | Zbl

[30] Khalova V.A., Khromov A.P., “Integralnyi operator s negladkoi involyutsiei”, Izv. Saratovsk. un-ta, Nov. ser. Ser.: Matem. Mekhan. Informatika, 13:1 (2013), 40–45 | Zbl

[31] Koroleva O.A., “Analog teoremy Zhordana–Dirikhle dlya integralnogo operatora s yadrom, imeyuschim skachki na lomanykh liniyakh”, Izv. Saratovsk. un-ta, Nov. ser. Ser.: Matem. Mekhan. Informatika, 13:1 (2013), 14–23 | MR | Zbl

[32] Burlutskaya M.Sh., Razlozhenie po sobstvennym funktsiyam differentsialnykh i funktsionalno-differentsialnykh operatorov na geometricheskikh grafakh, Diss. ... kand. fiz.-matem. nauk, VGU, Voronezh, 2007

[33] Kurdyumov V.P., Khromov A.P., “O bazisakh Rissa iz sobstvennykh i prisoedinennykh funktsii funktsio-nalno-differentsialnogo uravneniya s operatorom otrazheniya”, Differents. uravneniya, 44:2 (2008), 196–204 | MR | Zbl

[34] Kurdyumov V.P., Khromov A.P., “O bazisakh Rissa iz sobstvennykh i prisoedinennykh funktsii funktsionalno-differentsialnogo operatora peremennoi struktury”, Izv. vuzov. Matem., 2010, no. 2, 39–52 | Zbl

[35] Burlutskaya M.Sh., Khromov A.P., “The Steinhaus Theorem on Equiconvergence for Functional-Differential Operators”, Math. Notes, 90:1 (2011), 20–31 | DOI | MR | Zbl

[36] Burlutskaya M.Sh., “Asimptoticheskie formuly dlya sobstvennykh znachenii i sobstvennykh funktsii funktsionalno-differentsialnogo operatora s involyutsiei”, Vestn. Voronezhsk. gos. un-ta, Ser.: Fiz. Matem., 2011, no. 2, 64–72 | Zbl

[37] Pokornyi Yu.V. i dr., Differentsialnye uravneniya na geometricheskikh grafakh, Fizmatlit, M., 2004

[38] Zavgorodnii M.G., “Ob evolyutsionnykh zadachakh na grafakh”, Usp. matem. nauk, 46:6 (1991), 199–200

[39] Zavgorodnij M.G., “Adjoint and self-adjoint boundary value problems on a geometric graph”, Diff. Equat., 50:4 (2014), 441–452 | DOI | MR | Zbl

[40] Zavgorodnij M.G., “Quadratic functionals and nondegeneracy of boundary value problems on a geometric graph”, Diff. Equat., 52:1 (2016), 8–27 | DOI | MR

[41] Kulaev R.Ch., “O funktsii Grina kraevoi zadachi na grafe-puchke”, Izv. vuzov. Matem., 2013, no. 2, 56–66 | Zbl

[42] Diab A.T., Kuleshov P.A., Penkin O.M., “Estimate of the first eigenvalue of the laplacian on a graph”, Math. Notes, 96:5–6 (2014), 948–956 | DOI | MR | Zbl

[43] Diab A.T., Kaldybekova B.K., Penkin O.M., “On the multiplicity of eigenvalues of the Sturm-Liouville problem on graphs”, Math. Notes, 99:3–4 (2016), 492–502 | DOI | MR | Zbl

[44] Provotorov V.V., “Eigenfunctions of the Sturm-Liouville problem on a star graph”, Sb. Math., 199:10 (2008), 1523–1545 | DOI | MR | Zbl

[45] Provotorov V.V., “Expansion in eigenfunctions of the Sturm-Liouville problem on a graph bundle”, Russian Math. (Iz. VUZ), 52:3 (2008), 45–57 | DOI | MR | Zbl

[46] Volkova A.S., Provotorov V.V., “Obobschennye resheniya i obobschennye sobstvennye funktsii kraevykh zadach na geometricheskom grafe”, Izv. vuzov. Matem., 2014, no. 3, 3–18 | Zbl

[47] Gomilko A.M., Pivovarchik V.N., “Obratnaya zadacha Shturma–Liuvillya na grafe v vide vosmerki”, Ukr. matem. zhurn., 60:9 (2008), 1168–1188 | MR | Zbl

[48] Pryadiev V.L., “Odin podkhod k opisaniyu konechnoi formy resheniya volnovogo uravneniya na prostranstvennoi seti” (Simferopol), Spectral and Evolution Problems, 15, Proc. of the 15-th Crim. Autumn Math. School-Symposium (2005), 132–139 | MR

[49] Korovina O.V., Pryadiev V.L., “Struktura resheniya smeshannoi zadachi dlya volnovogo uravneniya na kompaktnom geometricheskom grafe v sluchae nenulevoi nachalnoi skorosti”, Izv. Saratovsk. un-ta. Nov. ser. Ser.: Matem. Mekhan. Informatika, 9:3 (2009), 37–46

[50] Kulaev R.Ch., “Teorema suschestvovaniya dlya parabolicheskoi smeshannoi zadachi na grafe s kraevymi usloviyami, soderzhaschimi proizvodnye po vremeni”, Tr. IMM UrO RAN, 16, no. 2, 2010, 139–148

[51] Volkova A.S., Gnilitskaya Yu.A., Provotorov V.V., “O razreshimosti kraevykh zadach dlya uravnenii parabolicheskogo i giperbolicheskogo tipov na geometricheskom grafe”, Sistemy upravleniya i informats. tekhnologii, 51:1 (2013), 11–15

[52] Golovko N.I., Golovaneva F.V., Zvereva M.B., Shabrov S.A., “O vozmozhnosti primeneniya metoda Fure k raznoporyadkovoi matematicheskoi modeli”, Vestn. Voronezhsk. gos. un-ta. Ser.: Fiz. Matem., 2017, no. 1, 91–98 | Zbl

[53] Burlutskaya M.S., “On Riesz bases of root functions for a class of functional-differential operators on a graph”, Diff. Equat., 45:6 (2009), 779–788 | DOI | MR | Zbl

[54] Burlutskaya M.Sh., Voprosy spektralnoi teorii dlya operatorov s involyutsiei i prilozheniya, Izd-vo «Nauchn. kn.», Voronezh, 2020

[55] Dzhakov P.V., Mityagin B.S., “Zony neustoichivosti odnomernykh periodicheskikh operatorov Shredingera i Diraka”, Usp. matem. nauk, 61:4 (2006), 77–182 | MR | Zbl

[56] Djakov P., Mityagin B., “Bari-Markus property for Riesz projections of 1D periodic Dirac operators”, Math. Nachr., 283:3 (2010), 443–462 | DOI | MR | Zbl

[57] Trooshin I., Yamamoto M., “Riesz basis of root vectors of a nonsymmetric system of first-order ordinary differential operators and application to inverse eigenvalue problems”, Appl. Anal., 2001, no. 80, 19–51 | MR | Zbl

[58] Baskakov A.G., Derbushev A.V., Scherbakov A.O., “Metod podobnykh operatorov v spektralnom analize nesamosopryazhennogo operatora Diraka s negladkim potentsialom”, Izv. RAN. Ser. Matem., 75:3 (2011), 3–28 | MR | Zbl

[59] Savchuk A.M., Sadovnichaya I.V., “Asymptotic formulas for fundamental solutions of the Dirac system with complex-valued integrable potential”, Diff. Equat., 49:5 (2013), 273–284 | DOI | MR

[60] Savchuk A.M., Shkalikov A.A., “Dirac operator with complex-valued summable potential”, Math. Notes, 96:5 (2014), 777–810 | DOI | MR | Zbl

[61] Savchuk A.M., Sadovnichaya I.V., “The Riesz Basis Property of Generalized Eigenspaces for a Dirac System with Integrable Potential”, Dokl. Math., 91:3 (2015), 309–312 | DOI | MR | Zbl

[62] Malamud M.M., Oridoroga L.L., “On the completeness of root subspaces of boundary value problems for first order systems of ordinary differential equations”, J. Funct. Anal., 263 (2012), 1939–1980 | DOI | MR | Zbl

[63] Burlutskaya M.Sh., Kornev V.V., Khromov A.P., “Sistema Diraka s nedifferentsiruemym potentsialom i periodicheskimi kraevymi usloviyami”, Zhurn. vychisl. matem. i matem. fiziki, 52:9 (2012), 1621–1632 | Zbl

[64] Burlutskaya M.Sh., Kurdyumov V.P., Khromov A.P., “Refined asymptotic formulas for eigenvalues and eigenfunctions of the Dirac system”, Dokl. Math., 85:2 (2012), 240–242 | DOI | MR | Zbl

[65] Burlutskaya M.S., Khromov A.P., “Dirac operator with a potential of special form and with the periodic boundary conditions”, Diff. Equat., 54:5 (2018), 586–595 | DOI | MR | Zbl

[66] Djakov P., Mityagin B., $1$D Dirac operators with special periodic potentials, 2010, arXiv: 1007.3234v1 | MR

[67] Ilin V.A., “O razreshimosti smeshannykh zadach dlya giperbolicheskikh i parabolicheskikh uravnenii”, Usp. matem. nauk, 15:2 (1960), 97–154 | MR | Zbl

[68] Krylov A.N., O nekotorykh differentsialnykh uravneniyakh matematicheskoi fiziki, imeyuschikh prilozheniya v tekhnicheskikh voprosakh, GITTL, L., 1950

[69] Chernyatin V.A., Obosnovanie metoda Fure v smeshannoi zadache dlya uravnenii v chastnykh proizvodnykh, Izd-vo MGU, M., 1991

[70] Burlutskaya M.Sh., Khromov A.P., “Fourier method in an initial-boundary value problem for a first-order partial differential equation with involution”, Comput. Math. Math. Phys., 51:12 (2011), 2102–2114 | DOI | MR | Zbl

[71] Burlutskaya M.Sh., “Mixed problem for a first-order partial differential equation with involution and periodic boundary conditions”, Comput. Math. Math. Phys., 54:1 (2014), 1–10 | DOI | MR | Zbl

[72] Burlutskaya M.Sh., “Smeshannaya zadacha s involyutsiei na grafe iz dvukh reber s tsiklom”, DAN, 447:5 (2012), 479–482 | MR | Zbl

[73] Burlutskaya M.Sh., “Classical and generalized solutions of a mixed problem for a system of first-order equations with a continuous potential”, Comput. Math. Math. Phys., 59:3 (2019), 355–365 | DOI | MR | Zbl

[74] Burlutskaya M.Sh., Khromov A.P., “The resolvent approach for the wave equation”, Comput. Math. Math. Phys., 55:2 (2015), 227–239 | DOI | MR | Zbl

[75] Burlutskaya M.S., “Fourier method in a mixed problem for the wave equation on a graph”, Dokl. Math., 92:3 (2015), 735–738 | DOI | MR | Zbl

[76] Khromov A.P., “Smeshannaya zadacha dlya volnovogo uravneniya s proizvolnymi dvukhtochechnymi kraevymi usloviyami”, DAN, 462:2 (2015), 148–150 | Zbl

[77] Kornev V.V., Khromov A.P., “A resolvent approach in the Fourier method for the wave equation: The non-selfadjoint case”, Comput. Math. Math. Phys., 55:7 (2015), 1138–1149 | DOI | MR | Zbl

[78] Burlutskaya M.S., Khromov A.P., “Mixed problem for the wave equation with integrable potential in the case of two-point boundary conditions of distinct orders”, Diff. Equat., 53:4 (2017), 497–508 | DOI | MR | Zbl

[79] Khromov A.P., “On the convergence of the formal Fourier solution of the wave equation with a summable potential”, Comput. Math. Math. Phys., 56:10 (2016), 1778–1792 | DOI | MR | Zbl