Voir la notice de l'article provenant de la source Math-Net.Ru
@article{IVM_2021_5_a10, author = {M. Sh. Burlutskaya}, title = {Some properties of functional-differential operators with involution $\nu(x)=1-x$ and their applications}, journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika}, pages = {89--97}, publisher = {mathdoc}, number = {5}, year = {2021}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/IVM_2021_5_a10/} }
TY - JOUR AU - M. Sh. Burlutskaya TI - Some properties of functional-differential operators with involution $\nu(x)=1-x$ and their applications JO - Izvestiâ vysših učebnyh zavedenij. Matematika PY - 2021 SP - 89 EP - 97 IS - 5 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/IVM_2021_5_a10/ LA - ru ID - IVM_2021_5_a10 ER -
%0 Journal Article %A M. Sh. Burlutskaya %T Some properties of functional-differential operators with involution $\nu(x)=1-x$ and their applications %J Izvestiâ vysših učebnyh zavedenij. Matematika %D 2021 %P 89-97 %N 5 %I mathdoc %U http://geodesic.mathdoc.fr/item/IVM_2021_5_a10/ %G ru %F IVM_2021_5_a10
M. Sh. Burlutskaya. Some properties of functional-differential operators with involution $\nu(x)=1-x$ and their applications. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 5 (2021), pp. 89-97. http://geodesic.mathdoc.fr/item/IVM_2021_5_a10/
[1] Babbage Ch., “An essay towards the calculus of functions”, Philosophical transactions of the Royal Soc. of London, 11 (1816), 179–226
[2] Litvinchuk G.S., Kraevye zadachi i singulyarnye integralnye uravneniya so sdvigom, Nauka, M., 1977
[3] Karapetyants N.K., Samko S.G., Uravneniya s involyutivnymi operatorami i ikh prilozheniya, Rostovsk. gos. un-t, Rostov-na-Donu, 1988 | MR
[4] Viner I.Ya., “Differentsialnye uravneniya s involyutsiyami”, Differents. uravneniya, 5:6 (1969), 1131–1137 | MR | Zbl
[5] Wiener J., Generalized solutions of functional-differential equations, World Sci., 1993 | MR | Zbl
[6] Andreev A.A., “Ob analogakh klassicheskikh kraevykh zadach dlya odnogo differentsialnogo uravneniya vtorogo poryadka s otklonyayuschimsya argumentom”, Differents. uravneniya, 40:5 (2004), 1126–1128 | Zbl
[7] Andreev A.A., Saushkin I.N., “Ob analoge zadachi Trikomi dlya odnogo modelnogo uravneniya s involyutivnym otkloneniem v beskonechnoi oblasti”, Vestn. Samarsk. gos. tekh. un-ta. Ser.: Fiz.-matem. nauki, 2005, no. 34, 10–16
[8] Platonov S.S., “Razlozhenie po sobstvennym funktsiyam dlya nekotorykh funktsionalno-differentsialnykh operatorov”, Tr. Petrozavodsk. gos. un-ta. Ser. matem., 2004, no. 11, 15–35
[9] Watkins W.T., “Asymptotic properties of differential equations with involutions”, Int. J. Math. Math. Sci., 44:4 (2008), 485 | MR | Zbl
[10] Kopzhassarova A., Sarsenbi A., “Basis properties of eigenfunctions of second-order differential operators with involution”, Abstract and Appl. Anal., 2012 (2012), 576843 | MR | Zbl
[11] Ashyralyev A., Sarsenbi A., “Well-posedness of an elliptic equation with involution”, Electronic J. of Diff. Equat., 2015:284 (2015), 1–8 | MR
[12] Kritskov L.V., Sarsenbi A.M., “Spectral properties of a nonlocal problem for a second-order differential equation with an involution”, Diff. Equat., 51:8 (2015), 984–990 | DOI | MR | Zbl
[13] Kritskov L.V., Sarsenbi A.M., “Basicity in $L_p$ of root functions for differential equations with involution”, Electronic J. of Diff. Equat., 273 (2015), 1–9 | MR
[14] Kritskov L.V., Sarsenbi A.M., “Riesz basis property of system of root functions of second-order differential operator with involution”, Diff. Equat., 53:1 (2017), 33–46 | DOI | MR | Zbl
[15] Tojo F.A.F., Cabada A., “Existence results for a linear equation with reflection, non-constant coefficient and periodic boundary conditions”, J. Math. Anal. Appl., 412 (2014), 529–546 | DOI | MR | Zbl
[16] Cabada A., Tojo F.A.F., Differential Equations with Involutions, Atlantis Press, N.Y., 2015 | MR | Zbl
[17] Baskakov A.G., Krishtal I.A., Romanova E.Yu., “Spectral analysis of a differential operator with an involution”, J. Evolut. Equat., 17 (2017), 669–684 | DOI | MR | Zbl
[18] Baskakov A.G., Uskova N.B., “Fourier method for first order differential equations with involution and groups of operators”, Ufa Math. J., 10:3 (2018), 11–34 | DOI | MR | Zbl
[19] Vladykina V.E., Shkalikov A.A., “Regular Ordinary Differential Operators with Involution”, Math. Notes, 106:5 (2019), 674–687 | DOI | MR | Zbl
[20] Burlutskaya M.Sh., “O nekotorykh svoistvakh differentsialnykh uravnenii i smeshannykh zadach s involyutsiei”, Vestn. Voronezhsk. gos. un-ta. Ser.: Fiz. Matem., 2019, no. 1, 91–100 | MR | Zbl
[21] Burlutskaya M.Sh., Kurdyumov V.P., Lukonina A.S., Khromov A.P., “Funktsionalno-differentsialnyi operator s involyutsiei”, DAN, 414:4 (2007), 1309–1312
[22] Khromov A.P., “Ob obraschenii integralnykh operatorov s yadrami, razryvnymi na diagonalyakh”, Matem. zametki, 64:6 (1998), 932–949
[23] Kornev V.V., Khromov A.P., “Equiconvergence of expansions in eigenfunctions of integral operators with kernels that can have discontinuities on the diagonals”, Sb. Math., 192:10 (2001), 1451–1469 | DOI | MR | Zbl
[24] Khromov A.P., “Teorema ravnoskhodimosti dlya integralnogo operatora s peremennym verkhnim predelom integrirovaniya”, Metricheskaya teoriya funktsii i smezhnye voprosy analiza, sb. statei, Izd-vo AFTs, M., 1999, 255–266 | MR
[25] Kurdyumov V.P., Khromov A.P., “Riesz Bases of Eigenfunctions of an Integral Operator with a Variable Limit of Integration”, Math. Notes, 76:1 (2004), 90–102 | DOI | MR | Zbl
[26] Kornev V.V., Khromov A.P., “Absolyutnaya skhodimost razlozhenii po sobstvennym funktsiyam integralnogo operatora s peremennym predelom integrirovaniya”, Izv. RAN. Ser. matem., 69:4 (2005), 59–74 | MR | Zbl
[27] Kornev V.V., Khromov A.P., “Operator integrirovaniya s involyutsiei v verkhnem predele integrirovaniya”, DAN, 422:4 (2008), 459–462 | Zbl
[28] Khromov A.P., “Integral operators with kernels that are discontinuous on broken lines”, Sb. Math., 197:11 (2006), 1669–1696 | DOI | MR | Zbl
[29] Kuvardina L.P., Khromov A.P., “O ravnoskhodimosti razlozhenii po sobstvennym i prisoedinennym funktsiyam integralnogo operatora s involyutsiei”, Izv. vuzov. Matem., 2008, no. 5, 67–76 | MR | Zbl
[30] Khalova V.A., Khromov A.P., “Integralnyi operator s negladkoi involyutsiei”, Izv. Saratovsk. un-ta, Nov. ser. Ser.: Matem. Mekhan. Informatika, 13:1 (2013), 40–45 | Zbl
[31] Koroleva O.A., “Analog teoremy Zhordana–Dirikhle dlya integralnogo operatora s yadrom, imeyuschim skachki na lomanykh liniyakh”, Izv. Saratovsk. un-ta, Nov. ser. Ser.: Matem. Mekhan. Informatika, 13:1 (2013), 14–23 | MR | Zbl
[32] Burlutskaya M.Sh., Razlozhenie po sobstvennym funktsiyam differentsialnykh i funktsionalno-differentsialnykh operatorov na geometricheskikh grafakh, Diss. ... kand. fiz.-matem. nauk, VGU, Voronezh, 2007
[33] Kurdyumov V.P., Khromov A.P., “O bazisakh Rissa iz sobstvennykh i prisoedinennykh funktsii funktsio-nalno-differentsialnogo uravneniya s operatorom otrazheniya”, Differents. uravneniya, 44:2 (2008), 196–204 | MR | Zbl
[34] Kurdyumov V.P., Khromov A.P., “O bazisakh Rissa iz sobstvennykh i prisoedinennykh funktsii funktsionalno-differentsialnogo operatora peremennoi struktury”, Izv. vuzov. Matem., 2010, no. 2, 39–52 | Zbl
[35] Burlutskaya M.Sh., Khromov A.P., “The Steinhaus Theorem on Equiconvergence for Functional-Differential Operators”, Math. Notes, 90:1 (2011), 20–31 | DOI | MR | Zbl
[36] Burlutskaya M.Sh., “Asimptoticheskie formuly dlya sobstvennykh znachenii i sobstvennykh funktsii funktsionalno-differentsialnogo operatora s involyutsiei”, Vestn. Voronezhsk. gos. un-ta, Ser.: Fiz. Matem., 2011, no. 2, 64–72 | Zbl
[37] Pokornyi Yu.V. i dr., Differentsialnye uravneniya na geometricheskikh grafakh, Fizmatlit, M., 2004
[38] Zavgorodnii M.G., “Ob evolyutsionnykh zadachakh na grafakh”, Usp. matem. nauk, 46:6 (1991), 199–200
[39] Zavgorodnij M.G., “Adjoint and self-adjoint boundary value problems on a geometric graph”, Diff. Equat., 50:4 (2014), 441–452 | DOI | MR | Zbl
[40] Zavgorodnij M.G., “Quadratic functionals and nondegeneracy of boundary value problems on a geometric graph”, Diff. Equat., 52:1 (2016), 8–27 | DOI | MR
[41] Kulaev R.Ch., “O funktsii Grina kraevoi zadachi na grafe-puchke”, Izv. vuzov. Matem., 2013, no. 2, 56–66 | Zbl
[42] Diab A.T., Kuleshov P.A., Penkin O.M., “Estimate of the first eigenvalue of the laplacian on a graph”, Math. Notes, 96:5–6 (2014), 948–956 | DOI | MR | Zbl
[43] Diab A.T., Kaldybekova B.K., Penkin O.M., “On the multiplicity of eigenvalues of the Sturm-Liouville problem on graphs”, Math. Notes, 99:3–4 (2016), 492–502 | DOI | MR | Zbl
[44] Provotorov V.V., “Eigenfunctions of the Sturm-Liouville problem on a star graph”, Sb. Math., 199:10 (2008), 1523–1545 | DOI | MR | Zbl
[45] Provotorov V.V., “Expansion in eigenfunctions of the Sturm-Liouville problem on a graph bundle”, Russian Math. (Iz. VUZ), 52:3 (2008), 45–57 | DOI | MR | Zbl
[46] Volkova A.S., Provotorov V.V., “Obobschennye resheniya i obobschennye sobstvennye funktsii kraevykh zadach na geometricheskom grafe”, Izv. vuzov. Matem., 2014, no. 3, 3–18 | Zbl
[47] Gomilko A.M., Pivovarchik V.N., “Obratnaya zadacha Shturma–Liuvillya na grafe v vide vosmerki”, Ukr. matem. zhurn., 60:9 (2008), 1168–1188 | MR | Zbl
[48] Pryadiev V.L., “Odin podkhod k opisaniyu konechnoi formy resheniya volnovogo uravneniya na prostranstvennoi seti” (Simferopol), Spectral and Evolution Problems, 15, Proc. of the 15-th Crim. Autumn Math. School-Symposium (2005), 132–139 | MR
[49] Korovina O.V., Pryadiev V.L., “Struktura resheniya smeshannoi zadachi dlya volnovogo uravneniya na kompaktnom geometricheskom grafe v sluchae nenulevoi nachalnoi skorosti”, Izv. Saratovsk. un-ta. Nov. ser. Ser.: Matem. Mekhan. Informatika, 9:3 (2009), 37–46
[50] Kulaev R.Ch., “Teorema suschestvovaniya dlya parabolicheskoi smeshannoi zadachi na grafe s kraevymi usloviyami, soderzhaschimi proizvodnye po vremeni”, Tr. IMM UrO RAN, 16, no. 2, 2010, 139–148
[51] Volkova A.S., Gnilitskaya Yu.A., Provotorov V.V., “O razreshimosti kraevykh zadach dlya uravnenii parabolicheskogo i giperbolicheskogo tipov na geometricheskom grafe”, Sistemy upravleniya i informats. tekhnologii, 51:1 (2013), 11–15
[52] Golovko N.I., Golovaneva F.V., Zvereva M.B., Shabrov S.A., “O vozmozhnosti primeneniya metoda Fure k raznoporyadkovoi matematicheskoi modeli”, Vestn. Voronezhsk. gos. un-ta. Ser.: Fiz. Matem., 2017, no. 1, 91–98 | Zbl
[53] Burlutskaya M.S., “On Riesz bases of root functions for a class of functional-differential operators on a graph”, Diff. Equat., 45:6 (2009), 779–788 | DOI | MR | Zbl
[54] Burlutskaya M.Sh., Voprosy spektralnoi teorii dlya operatorov s involyutsiei i prilozheniya, Izd-vo «Nauchn. kn.», Voronezh, 2020
[55] Dzhakov P.V., Mityagin B.S., “Zony neustoichivosti odnomernykh periodicheskikh operatorov Shredingera i Diraka”, Usp. matem. nauk, 61:4 (2006), 77–182 | MR | Zbl
[56] Djakov P., Mityagin B., “Bari-Markus property for Riesz projections of 1D periodic Dirac operators”, Math. Nachr., 283:3 (2010), 443–462 | DOI | MR | Zbl
[57] Trooshin I., Yamamoto M., “Riesz basis of root vectors of a nonsymmetric system of first-order ordinary differential operators and application to inverse eigenvalue problems”, Appl. Anal., 2001, no. 80, 19–51 | MR | Zbl
[58] Baskakov A.G., Derbushev A.V., Scherbakov A.O., “Metod podobnykh operatorov v spektralnom analize nesamosopryazhennogo operatora Diraka s negladkim potentsialom”, Izv. RAN. Ser. Matem., 75:3 (2011), 3–28 | MR | Zbl
[59] Savchuk A.M., Sadovnichaya I.V., “Asymptotic formulas for fundamental solutions of the Dirac system with complex-valued integrable potential”, Diff. Equat., 49:5 (2013), 273–284 | DOI | MR
[60] Savchuk A.M., Shkalikov A.A., “Dirac operator with complex-valued summable potential”, Math. Notes, 96:5 (2014), 777–810 | DOI | MR | Zbl
[61] Savchuk A.M., Sadovnichaya I.V., “The Riesz Basis Property of Generalized Eigenspaces for a Dirac System with Integrable Potential”, Dokl. Math., 91:3 (2015), 309–312 | DOI | MR | Zbl
[62] Malamud M.M., Oridoroga L.L., “On the completeness of root subspaces of boundary value problems for first order systems of ordinary differential equations”, J. Funct. Anal., 263 (2012), 1939–1980 | DOI | MR | Zbl
[63] Burlutskaya M.Sh., Kornev V.V., Khromov A.P., “Sistema Diraka s nedifferentsiruemym potentsialom i periodicheskimi kraevymi usloviyami”, Zhurn. vychisl. matem. i matem. fiziki, 52:9 (2012), 1621–1632 | Zbl
[64] Burlutskaya M.Sh., Kurdyumov V.P., Khromov A.P., “Refined asymptotic formulas for eigenvalues and eigenfunctions of the Dirac system”, Dokl. Math., 85:2 (2012), 240–242 | DOI | MR | Zbl
[65] Burlutskaya M.S., Khromov A.P., “Dirac operator with a potential of special form and with the periodic boundary conditions”, Diff. Equat., 54:5 (2018), 586–595 | DOI | MR | Zbl
[66] Djakov P., Mityagin B., $1$D Dirac operators with special periodic potentials, 2010, arXiv: 1007.3234v1 | MR
[67] Ilin V.A., “O razreshimosti smeshannykh zadach dlya giperbolicheskikh i parabolicheskikh uravnenii”, Usp. matem. nauk, 15:2 (1960), 97–154 | MR | Zbl
[68] Krylov A.N., O nekotorykh differentsialnykh uravneniyakh matematicheskoi fiziki, imeyuschikh prilozheniya v tekhnicheskikh voprosakh, GITTL, L., 1950
[69] Chernyatin V.A., Obosnovanie metoda Fure v smeshannoi zadache dlya uravnenii v chastnykh proizvodnykh, Izd-vo MGU, M., 1991
[70] Burlutskaya M.Sh., Khromov A.P., “Fourier method in an initial-boundary value problem for a first-order partial differential equation with involution”, Comput. Math. Math. Phys., 51:12 (2011), 2102–2114 | DOI | MR | Zbl
[71] Burlutskaya M.Sh., “Mixed problem for a first-order partial differential equation with involution and periodic boundary conditions”, Comput. Math. Math. Phys., 54:1 (2014), 1–10 | DOI | MR | Zbl
[72] Burlutskaya M.Sh., “Smeshannaya zadacha s involyutsiei na grafe iz dvukh reber s tsiklom”, DAN, 447:5 (2012), 479–482 | MR | Zbl
[73] Burlutskaya M.Sh., “Classical and generalized solutions of a mixed problem for a system of first-order equations with a continuous potential”, Comput. Math. Math. Phys., 59:3 (2019), 355–365 | DOI | MR | Zbl
[74] Burlutskaya M.Sh., Khromov A.P., “The resolvent approach for the wave equation”, Comput. Math. Math. Phys., 55:2 (2015), 227–239 | DOI | MR | Zbl
[75] Burlutskaya M.S., “Fourier method in a mixed problem for the wave equation on a graph”, Dokl. Math., 92:3 (2015), 735–738 | DOI | MR | Zbl
[76] Khromov A.P., “Smeshannaya zadacha dlya volnovogo uravneniya s proizvolnymi dvukhtochechnymi kraevymi usloviyami”, DAN, 462:2 (2015), 148–150 | Zbl
[77] Kornev V.V., Khromov A.P., “A resolvent approach in the Fourier method for the wave equation: The non-selfadjoint case”, Comput. Math. Math. Phys., 55:7 (2015), 1138–1149 | DOI | MR | Zbl
[78] Burlutskaya M.S., Khromov A.P., “Mixed problem for the wave equation with integrable potential in the case of two-point boundary conditions of distinct orders”, Diff. Equat., 53:4 (2017), 497–508 | DOI | MR | Zbl
[79] Khromov A.P., “On the convergence of the formal Fourier solution of the wave equation with a summable potential”, Comput. Math. Math. Phys., 56:10 (2016), 1778–1792 | DOI | MR | Zbl