A priori estimation of solutions of a boundary problem for a pseudodifferential equation with degeneration
Izvestiâ vysših učebnyh zavedenij. Matematika, no. 5 (2021), pp. 6-10.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper, we obtain a coercive a priori estimation of solutions to the boundary value problem in a half-space for a degenerate psedodifferential equation. The left part of the equation is the sum of the pseudo-differential operator with degeneracy, constructed by a special integral transformation, and the differentiation operator. A priori estimation is obtained in special weight spaces of the type of S. L. Sobolev spaces, the norms in which are constructed using a special integral transformation.
Mots-clés : a priori estimation
Keywords: degenerate equation, pseudo-differential operator with degeneration, S. L. Sobolev weight spaces.
@article{IVM_2021_5_a1,
     author = {A. D. Baev and D. A. Chechin and S. A. Shabrov and N. I. Rabotinskaya and N. A. Babaitseva},
     title = {A priori estimation of solutions of a boundary problem for a pseudodifferential equation with degeneration},
     journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika},
     pages = {6--10},
     publisher = {mathdoc},
     number = {5},
     year = {2021},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/IVM_2021_5_a1/}
}
TY  - JOUR
AU  - A. D. Baev
AU  - D. A. Chechin
AU  - S. A. Shabrov
AU  - N. I. Rabotinskaya
AU  - N. A. Babaitseva
TI  - A priori estimation of solutions of a boundary problem for a pseudodifferential equation with degeneration
JO  - Izvestiâ vysših učebnyh zavedenij. Matematika
PY  - 2021
SP  - 6
EP  - 10
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IVM_2021_5_a1/
LA  - ru
ID  - IVM_2021_5_a1
ER  - 
%0 Journal Article
%A A. D. Baev
%A D. A. Chechin
%A S. A. Shabrov
%A N. I. Rabotinskaya
%A N. A. Babaitseva
%T A priori estimation of solutions of a boundary problem for a pseudodifferential equation with degeneration
%J Izvestiâ vysših učebnyh zavedenij. Matematika
%D 2021
%P 6-10
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IVM_2021_5_a1/
%G ru
%F IVM_2021_5_a1
A. D. Baev; D. A. Chechin; S. A. Shabrov; N. I. Rabotinskaya; N. A. Babaitseva. A priori estimation of solutions of a boundary problem for a pseudodifferential equation with degeneration. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 5 (2021), pp. 6-10. http://geodesic.mathdoc.fr/item/IVM_2021_5_a1/

[1] Baev A.D., “Vyrozhdayuschiesya ellipticheskie uravneniya vysokogo poryadka i svyazannye s nimi psevdodifferentsialnye operatory”, Dokl. Akademii nauk, 265:5 (1982), 1044–1046 | MR | Zbl

[2] Baev A.D., “Ob obschikh kraevykh zadachakh v poluprostranstve dlya vyrozhdayuschikhsya ellipticheskikh uravnenii vysokogo poryadka”, Dokl. Akademii nauk, 422:6 (2008), 727–728 | Zbl

[3] Levendorskii S.Z., “Kraevye zadachi v poluprostranstve dlya kvaziellipticheskikh psevdodifferentsialnykh operatorov, vyrozhdayuschikhsya na granitse”, Matem. sb., 111:153 (1980), 483–501

[4] Baev A.D., Kovalevskii R.A., “Kraevye zadachi dlya odnogo klassa vyrozhdayuschikhsya psevdodifferentsialnykh uravnenii”, Dokl. Akademii nauk, 461:1 (2016), 7–9

[5] Baev A.D., Kovalevskii R.A., Kobylinskii P.A., “O vyrozhdayuschikhsya ellipticheskikh uravneniyakh vysokogo poryadka i psevdodifferentsialnykh operatorakh s vyrozhdeniem”, Dokl. Akademii nauk, 471:4 (2016), 387–390 | Zbl

[6] Baev A.D., Sadchikov P.V., “Korrektnost nekotorykh kraevykh zadach, modeliruyuschikh protsessy s vyrozhdeniem”, Nauchno-tekhnicheskie vedomosti SPbGPU. Fiz.-matem. nauki, 4:88 (2009), 50–56

[7] Baev A.D., Rabotinskaya N.I., “O nekotorykh svoistvakh odnogo klassa vyrozhdayuschikhsya psevdodifferentsialnykh operatorov”, Dokl. Akademii nauk, 477:1 (2017), 7–10 | Zbl