On the problem of solvability of nonlinear boundary value problems for arbitrary isotropic shallow shells of the Timoshenko type with free edges
Izvestiâ vysših učebnyh zavedenij. Matematika, no. 4 (2021), pp. 90-107.

Voir la notice de l'article provenant de la source Math-Net.Ru

The solvability of a geometrically nonlinear boundary value problem for elastic shallow arbitrary isotropic inhomogeneous shells with free edges in the framework of the S.P. Timoshenko shear model is being investigated. The research method is based on integral representations for generalized displacements containing arbitrary holomorphic functions. Holomorphic functions are found so that the generalized displacements satisfy the given boundary conditions. As a result, the original problem reduces to one nonlinear operator equation for generalized displacements in Sobolev space, the solvability of which is established using the principle of contraction mappings.
Keywords: shallow inhomogeneous isotropic shell of the Timoshenko type, equilibrium equations, static boundary conditions, generalized displacements, generalized solution, integral representations, holomorphic functions, integral equations, operator, existence theorem.
@article{IVM_2021_4_a6,
     author = {S. N. Timergaliev},
     title = {On the problem of solvability of nonlinear boundary value problems for arbitrary isotropic shallow shells of the {Timoshenko} type with free edges},
     journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika},
     pages = {90--107},
     publisher = {mathdoc},
     number = {4},
     year = {2021},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/IVM_2021_4_a6/}
}
TY  - JOUR
AU  - S. N. Timergaliev
TI  - On the problem of solvability of nonlinear boundary value problems for arbitrary isotropic shallow shells of the Timoshenko type with free edges
JO  - Izvestiâ vysših učebnyh zavedenij. Matematika
PY  - 2021
SP  - 90
EP  - 107
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IVM_2021_4_a6/
LA  - ru
ID  - IVM_2021_4_a6
ER  - 
%0 Journal Article
%A S. N. Timergaliev
%T On the problem of solvability of nonlinear boundary value problems for arbitrary isotropic shallow shells of the Timoshenko type with free edges
%J Izvestiâ vysših učebnyh zavedenij. Matematika
%D 2021
%P 90-107
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IVM_2021_4_a6/
%G ru
%F IVM_2021_4_a6
S. N. Timergaliev. On the problem of solvability of nonlinear boundary value problems for arbitrary isotropic shallow shells of the Timoshenko type with free edges. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 4 (2021), pp. 90-107. http://geodesic.mathdoc.fr/item/IVM_2021_4_a6/

[1] Vorovich I. I., Matematicheskie problemy nelineinoi teorii pologikh obolochek, Nauka, M., 1989

[2] Morozov N. F., Izbrannye dvumernye zadachi teorii uprugosti, LGU, L., 1978

[3] Karchevskii M. M., “Issledovanie razreshimosti nelineinoi zadachi o ravnovesii pologoi nezakreplennoi obolochki”, Uchen. zap. Kazansk. un-ta. Ser. fiz.-matem. nauk, 155, no. 3, 2013, 105–110

[4] Karchevskii M. M., “Smeshannyi metod konechnykh elementov dlya neklassicheskikh granichnykh zadach teorii pologikh obolochek”, Uchen. zap. Kazansk. un-ta. Ser. fiz.-matem. nauk, 158, no. 3, 2013, 322–335

[5] Badriev I. B., Makarov M. V., Paimushin V. N., “Razreshimost fizicheski i geometricheski nelineinoi zadachi teorii trekhsloinykh plastin s tranversalno-myagkim zapolnitelem”, Izv. vuzov. Matem., 2015, no. 10, 66–71

[6] Paimushin V. N., Kholmogorov S. A., Badriev I. B., “Consistent equations of nonlinear multilayer shells theory in the quadratic approximation”, Lobachevskii J. Math., 40:3 (2019), 349–363 | DOI | MR | Zbl

[7] Timergaliev S. N., Teoremy suschestvovaniya v nelineinoi teorii tonkikh uprugikh obolochek, Izd-vo Kazansk. un-ta, Kazan, 2011

[8] Timergaliev S. N., “Dokazatelstvo suschestvovaniya resheniya sistemy differentsialnykh uravnenii s chastnymi proizvodnymi nelineinoi teorii pologikh obolochek tipa Timoshenko”, Differents. uravneniya, 48:3 (2012), 450–454 | MR | Zbl

[9] Timergaliev S. N., “O suschestvovanii reshenii geometricheski nelineinykh zadach dlya pologikh obolochek tipa Timoshenko so svobodnymi krayami”, Izv. vuzov. Matem., 2014, no. 3, 40–56 | MR | Zbl

[10] Timergaliev S. N., “K voprosu o suschestvovanii reshenii nelineinoi kraevoi zadachi dlya sistemy differentsialnykh uravnenii s chastnymi proizvodnymi nelineinoi teorii pologikh obolochek tipa Timoshenko so svobodnymi krayami”, Differents. uravneniya, 51:3 (2015), 373–386 | MR | Zbl

[11] Timergaliev S. N., Kharasova L. S., “Issledovanie razreshimosti odnoi kraevoi zadachi dlya sistemy nelineinykh differentsialnykh uravnenii teorii pologikh obolochek tipa Timoshenko”, Differents. uravneniya, 52:5 (2016), 651–664 | MR | Zbl

[12] Timergaliev S. N., “Metod integralnykh uravnenii v nelineinykh kraevykh zadachakh dlya pologikh obolochek tipa Timoshenko so svobodnymi krayami”, Izv. vuzov. Matem., 2017, no. 4, 59–75 | Zbl

[13] Timergaliev S. N., “K probleme razreshimosti nelineinykh zadach ravnovesiya pologikh obolochek tipa Timoshenko”, Prikl. matem. i mekhan., 82:1 (2018), 98–113

[14] Timergaliev S. N., Uglov A. N., “Application of Riemann–Hilbert Problem Solutions to a Study of Nonlinear Boundary Value Problems for Timoshenko Type Inhomogeneous Shells with Free Edges”, Lobachevskii J. Math., 39:6 (2018), 855–865 | DOI | MR | Zbl

[15] Timergaliev S. N., “Method of Integral Equations for Studying the Solvability of Boundary Value Problems for the System of Nonlinear Differential Equations of the Theory of Timoshenko Type Shallow Inhomogeneous Shells”, Diff. Equat., 55:2 (2019), 243–259 | DOI | MR | Zbl

[16] Timergaliev S. N., “O suschestvovanii reshenii nelineinykh zadach ravnovesiya pologikh neodnorodnykh anizotropnykh obolochek tipa Timoshenko”, Izv. vuzov. Matem., 2019, no. 8, 45–61 | Zbl

[17] Galimov K. Z., Osnovy nelineinoi teorii tonkikh obolochek, Izd-vo Kazansk. un-ta, Kazan, 1975

[18] Vekua I. N., Obobschennye analiticheskie funktsii, Nauka, M., 1988

[19] Muskhelishvili N. I., Singulyarnye integralnye uravneniya, Fizmatgiz, M., 1962

[20] Presdorf Z., Nekotorye klassy singulyarnykh uravnenii, Mir, M., 1979

[21] Gakhov F. D., Kraevye zadachi, $2$-e izd., Fizmatgiz, M., 1963

[22] Krasnoselskii M. A., Topologicheskie metody v teorii nelineinykh integralnykh uravnenii, Gostekhizdat, M., 1956