On the explicit representation of polyorthogonal polynomials
Izvestiâ vysših učebnyh zavedenij. Matematika, no. 4 (2021), pp. 80-89.

Voir la notice de l'article provenant de la source Math-Net.Ru

New concepts are introduced in the work: an admissible index, an almost perfect system of functions. Using these concepts for an arbitrary system of power series of Laurent type is formulated and proved a criterion for the uniqueness of a associated with this system of a poly orthogonal polynomial. The explicit form of this polynomial is found, as well as the explicit form of polynomials standing in the numerator and denominator of the corresponding of Padé approximations. The propositions proved complement the well-known results the in theory of polyorthogonal polynomials and Padé approximations.
Keywords: Padé approximations, normal index, perfect system, Hankel determinant
Mots-clés : polyorthogonal polynomials.
@article{IVM_2021_4_a5,
     author = {A. P. Starovoitov and N. V. Ryabchenko},
     title = {On the explicit representation of polyorthogonal polynomials},
     journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika},
     pages = {80--89},
     publisher = {mathdoc},
     number = {4},
     year = {2021},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/IVM_2021_4_a5/}
}
TY  - JOUR
AU  - A. P. Starovoitov
AU  - N. V. Ryabchenko
TI  - On the explicit representation of polyorthogonal polynomials
JO  - Izvestiâ vysših učebnyh zavedenij. Matematika
PY  - 2021
SP  - 80
EP  - 89
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IVM_2021_4_a5/
LA  - ru
ID  - IVM_2021_4_a5
ER  - 
%0 Journal Article
%A A. P. Starovoitov
%A N. V. Ryabchenko
%T On the explicit representation of polyorthogonal polynomials
%J Izvestiâ vysših učebnyh zavedenij. Matematika
%D 2021
%P 80-89
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IVM_2021_4_a5/
%G ru
%F IVM_2021_4_a5
A. P. Starovoitov; N. V. Ryabchenko. On the explicit representation of polyorthogonal polynomials. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 4 (2021), pp. 80-89. http://geodesic.mathdoc.fr/item/IVM_2021_4_a5/

[1] Nikishin E. M., Sorokin V. N., Ratsionalnye approksimatsii i ortogonalnost, Nauka, M., 1988 | MR

[2] Aptekarev A. I., Marcellán F., Rocha I., “Semiclassical multiple orthogonal polynomials and the properties of Jacobi-Bessel polynomials”, J. Approx. Theory, 90:1 (1997), 177–146 | DOI | MR

[3] Aptekarev A. I., “Multiple orthogonal polynomials”, J. Comput. Appl. Math., 99:1–2 (1998), 423–447 | DOI | MR | Zbl

[4] Aptekarev A., Kaliaguine V., Van Iseghem J., “The genetic sums' representation for the moments of a system of Stieltjes functions and its application”, Constr. Approx., 16 (2000), 487–524 | DOI | MR | Zbl

[5] Van Assche W., Coussement E., “Some classical multiple orthogonal polynomials”, J. Comput. Appl. Math., 127 (2001), 317–347 | DOI | MR | Zbl

[6] Aptekarev A. I., Branquinho A., Van Assche W., “Multiple orthogonal polynomials for classcal weights”, Transactions of the American Math. Soc., 355:10 (2003), 3887–3914 | DOI | MR | Zbl

[7] Kuijlaars A. B.J., Martínez-Finkelshtein A., Wielonsky F., “Non-intersecting squared Bessel paths and multiple orthogonal polynomials for modified Bessel weights”, Comm. Math. Phys., 286:1 (2009), 217–275 | DOI | MR | Zbl

[8] Natanson I. P., Konstruktivnaya teoriya funktsii, GITTL, M.–L., 1949 | MR

[9] Frank E., “Orthogonality properties of C-fractions”, Bull. Amer. Math. Soc., 55:4 (1949), 384–390 | DOI | MR | Zbl

[10] Van Rossum H., “Systems of orthogonal and quasi-orthogonal polynomials connected with the Padé table. I; II; III”, K. Nederl. Akad. Wetensch., Ser. A, 58 (1955), 517–534 ; 675–682 | DOI | MR | Zbl

[11] Beukers F., “A note on the irrationality of $\zeta(2)$ and $\zeta(3)$”, Bull. London Math. Soc., 11 (1979), 268–272 | DOI | MR | Zbl

[12] Sorokin V. N., “Approksimatsii Ermita–Pade dlya sistem Nikishina i irratsionalnost chisla $\zeta(3)$”, UMN, 49:2 (1994), 167–168 | MR | Zbl

[13] Kalyagin V. A., “Approksimatsii Ermita–Pade i spektralnyi analiz nesimmetrichnykh operatorov”, Matem. sb., 185:6 (1994), 79–100 | Zbl

[14] Aptekarev A. I., Kalyagin V. A., Saff E. B., “Higher-order three-term recurrences and asymptotics of multiple orthogonal polynomials”, Constr. Approx., 30:2 (2009), 175–223 | DOI | MR | Zbl

[15] Daems E., Kuijlaars A. B.J., “Multiple orthogonal polynomials of mixed type and non-intersecting Brownian motions”, J. Approx. Theory, 146:1 (2007), 91–114 | DOI | MR | Zbl

[16] Kuijlaars A. B.J., Zhang L.,, “Singular values of products of Ginibre random matrices, multiple orthogonal polynomials and hard edge scalings”, Comm. Math. Phys., 332:2 (2014), 750–781 | DOI | MR

[17] Mukhin E., Varchenko A., “Multiple orthogonal polynomials and a counterexample to the Gaudin Bethe Ansatz conjecture”, Trans. Amer. Math. Soc., 359:11 (2007), 5383–5418 | DOI | MR | Zbl