The Tricomi problem for the Lavrentiev–Bitsadze differential-difference equation
Izvestiâ vysših učebnyh zavedenij. Matematika, no. 4 (2021), pp. 69-79
Cet article a éte moissonné depuis la source Math-Net.Ru
The Tricomi boundary value problem for the leading-retarded equation of the mixed type of Lavrentiev–Bitsadze is investigated. The problem is uniquely solvable.
Keywords:
mixed type equation, integral equation, difference equation, concentrated delay and lead.
@article{IVM_2021_4_a4,
author = {A. N. Zarubin},
title = {The {Tricomi} problem for the {Lavrentiev{\textendash}Bitsadze} differential-difference equation},
journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika},
pages = {69--79},
year = {2021},
number = {4},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/IVM_2021_4_a4/}
}
A. N. Zarubin. The Tricomi problem for the Lavrentiev–Bitsadze differential-difference equation. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 4 (2021), pp. 69-79. http://geodesic.mathdoc.fr/item/IVM_2021_4_a4/
[1] Frankl F. I., Izbrannye trudy po gazovoi dinamike, Nauka, M., 1973
[2] Zarubin A. N., Uravneniya smeshannogo tipa s zapazdyvayuschim argumentom, Izd-vo Orlovskogo gos. un-ta, Orel, 1999
[3] Gakhov F. D., Kraevye zadachi, Nauka, M., 1977
[4] Prudnikov A. P., Brychkov Yu. A., Marichev O. I., Integraly i ryady, Nauka, M., 1981 | MR
[5] Flaisher N. M., “Novyi metod resheniya v zamknutoi forme dlya nekotorykh klassov singulyarnykh integralnykh uravnenii s regulyarnoi chastyu”, Revue Roumaine de math. pures appl., 10:5 (1965), 615–620 | Zbl
[6] Baburin Yu. S., “O singulyarizatsii singulyarnykh integralnykh uravnenii”, Differents. uravneniya, 10, Ryazan, 1977, 14–24 | MR | Zbl
[7] Krasnov M. L., Integralnye uravneniya, Nauka, M., 1975