On integral operators with homogeneous kernels and trigonometric coefficients
Izvestiâ vysših učebnyh zavedenij. Matematika, no. 4 (2021), pp. 3-10.

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider the multidimensional integral operators with homogeneous of degree $(-n)$ kernels and special type trigonometric coefficients. For these operators we obtain the necessary and sufficient conditions of Fredholmness and we calculate the index.
Keywords: integral operator, homogeneous kernel, Fredholmness, index, spherical harmonics.
Mots-clés : symbol
@article{IVM_2021_4_a0,
     author = {O. G. Avsyankin},
     title = {On integral operators with homogeneous kernels and trigonometric coefficients},
     journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika},
     pages = {3--10},
     publisher = {mathdoc},
     number = {4},
     year = {2021},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/IVM_2021_4_a0/}
}
TY  - JOUR
AU  - O. G. Avsyankin
TI  - On integral operators with homogeneous kernels and trigonometric coefficients
JO  - Izvestiâ vysših učebnyh zavedenij. Matematika
PY  - 2021
SP  - 3
EP  - 10
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IVM_2021_4_a0/
LA  - ru
ID  - IVM_2021_4_a0
ER  - 
%0 Journal Article
%A O. G. Avsyankin
%T On integral operators with homogeneous kernels and trigonometric coefficients
%J Izvestiâ vysših učebnyh zavedenij. Matematika
%D 2021
%P 3-10
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IVM_2021_4_a0/
%G ru
%F IVM_2021_4_a0
O. G. Avsyankin. On integral operators with homogeneous kernels and trigonometric coefficients. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 4 (2021), pp. 3-10. http://geodesic.mathdoc.fr/item/IVM_2021_4_a0/

[1] Karapetiants N. K., Samko S. G., Equations with Involutive Operators, Birkhauser, Boston–Basel–Berlin, 2001 | MR | Zbl

[2] Avsyankin O. G., Karapetyants N. K., “Proektsionnyi metod v teorii integralnykh operatorov s odnorodnymi yadrami”, Matem. zametki, 75:2 (2004), 163–172 | MR | Zbl

[3] Avsyankin O. G., Peretyatkin F.Ġ., “Ob ogranichennosti i kompaktnosti mnogomernykh integralnykh operatorov s odnorodnymi yadrami”, Izv. vuzov. Matem., 2013, no. 11, 64–68 | Zbl

[4] Avsyankin O. G., “O $C^*$-algebre integralnykh operatorov s odnorodnymi yadrami i ostsilliruyuschimi koeffitsientami”, Matem. zametki, 99:3 (2016), 323–332 | MR | Zbl

[5] Avsyankin O. G., “Ob integralnykh operatorakh tipa Volterra s odnorodnymi yadrami v vesovykh $L_p$–prostranstvakh”, Izv. vuzov. Matem., 2017, no. 11, 3–12 | MR | Zbl

[6] Mikhailov L. G., Novyi klass osobykh integralnykh uravnenii i ego primeneniya k differentsialnym uravneniyam s singulyarnymi koeffitsientami, v. 1, Tr. AN Tadzh. SSR, Dushanbe, 1963

[7] Samko S. G., Gipersingulyarnye integraly i ikh prilozheniya, Izd-vo RGU, Rostov n/D, 1984 | MR

[8] Shteinberg B. Ya., “Ob operatorakh tipa svertki na lokalno kompaktnykh gruppakh”, Funkts. analiz i ego prilozh., 15:3 (1981), 95–96 | MR

[9] Shteinberg B. Ya., Kompaktnost i neterovost operatorov svertki s izmerimymi koeffitsientami na lokalno kompaktnykh gruppakh, Diss. ... kand. fiz.-matem. nauk, Rostovsk. gos. un-t, Rostov-na-Donu, 1982

[10] Gokhberg I. Ts., Feldman I. A., Uravneniya v svertkakh i proektsionnye metody ikh resheniya, Nauka, M., 1971