Inverse problems for a two-dimensional heat equation with unknown right-hand side
Izvestiâ vysših učebnyh zavedenij. Matematika, no. 3 (2021), pp. 83-97.

Voir la notice de l'article provenant de la source Math-Net.Ru

Based on the solution of the first initial-boundary value problem for the inhomo-geneous two-dimensional heat equation, the inverse problems are posed and studied to find the factors of the right-hand side depending on spatial variables and time. Previously, the solution of the direct initial-boundary-value problem is constructed explicitly. The uniqueness of the solution of the direct and inverse problems is proved on the basis of the completeness property of the system of eigenfunctions of the corresponding homogeneous Dirichlet problem for the Laplace operator. Existence theorems for solving inverse problems are established. The solutions of which are built explicitly.
Keywords: heat equation, initial-boundary value problem, inverse problem, uniqueness, series, integral equation.
Mots-clés : existence
@article{IVM_2021_3_a7,
     author = {K. B. Sabitov and A. R. Zainullov},
     title = {Inverse problems for a two-dimensional heat equation with unknown right-hand side},
     journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika},
     pages = {83--97},
     publisher = {mathdoc},
     number = {3},
     year = {2021},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/IVM_2021_3_a7/}
}
TY  - JOUR
AU  - K. B. Sabitov
AU  - A. R. Zainullov
TI  - Inverse problems for a two-dimensional heat equation with unknown right-hand side
JO  - Izvestiâ vysših učebnyh zavedenij. Matematika
PY  - 2021
SP  - 83
EP  - 97
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IVM_2021_3_a7/
LA  - ru
ID  - IVM_2021_3_a7
ER  - 
%0 Journal Article
%A K. B. Sabitov
%A A. R. Zainullov
%T Inverse problems for a two-dimensional heat equation with unknown right-hand side
%J Izvestiâ vysših učebnyh zavedenij. Matematika
%D 2021
%P 83-97
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IVM_2021_3_a7/
%G ru
%F IVM_2021_3_a7
K. B. Sabitov; A. R. Zainullov. Inverse problems for a two-dimensional heat equation with unknown right-hand side. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 3 (2021), pp. 83-97. http://geodesic.mathdoc.fr/item/IVM_2021_3_a7/

[1] Lavrentev M. M., Vasilev V. G., Romanov V. G., Mnogomernye obratnye zadachi dlya differentsialnykh uravnenii, Nauka, Novosibirsk, 1969

[2] Ivanov V. K., Vasin V. V., Tanana V. P., Teoriya lineinykh nekorrektnykh zadach i ee prilozheniya, Nauka, M., 1978

[3] Lavrentev M. M., Reznitskaya K. G., Yakhno V. G., Odnomernye obratnye zadachi matematicheskoi fiziki, Nauka, Novosibirsk, 1982

[4] Romanov V. G., Obratnye zadachi matematicheskoi fiziki, Nauka, M., 1984

[5] Romanov V. G., Kabanikhin S. I., Obratnye zadachi geoelektriki, Nauka, M., 1991 | MR

[6] Denisov A. M., Vvedenie v teoriyu obratnykh zadach, MGU, M., 1994 | MR

[7] Prilepko A. I., Orlovsky D. G., Vasin I. A., Methods for Solving Inverse Problems in Mathematical Physics, Marcel Dekker Inc., New York–Basel, 1999, 709 | MR

[8] Isakov V., Inverse problems for partial differential equations, Springer, New-York, 2006, 358 | MR

[9] Kabanikhin S. I., Obratnye i nekorrektnye zadachi, Sib. nauchn. izd-vo, Novosibirsk, 2009

[10] Prilepko A. I., Solovev V. V., “Teoremy razreshimosti i metod Rote v obratnykh zadachakh dlya uravneniya parabolicheskogo tipa. I”, Differents. uravneniya, 23:10 (1987), 1791–1799 | MR | Zbl

[11] Prilepko A. I., Solovev V. V., “Teoremy razreshimosti i metod Rote v obratnykh zadachakh dlya uravneniya parabolicheskogo tipa. II”, Differents. uravneniya, 23:11 (1987), 1971–1980 | MR | Zbl

[12] Solovev V. V., “Opredelenie istochnika i koeffitsientov v parabolicheskom uravnenii v mnogomernom sluchae”, Differents. uravneniya, 31:6 (1995), 1060–1069 | MR | Zbl

[13] Kostin A. B., “Obratnaya zadacha vosstanovleniya istochnika v parabolicheskom uravnenii po usloviyu nelokalnogo nablyudeniya”, Matem. sb., 204:10 (2013), 3–46 | Zbl

[14] Orlovskii D. G., “K zadache opredeleniya parametra evolyutsionnogo uravneniya”, Differents. uravneniya, 26:9 (1990), 1614–1621 | MR

[15] Tikhonov I. V., Eidelman Yu. S., “Kriterii edinstvennosti v obratnoi zadache dlya abstraktnogo differentsialnogo uravneniya s nestatsionarnym neodnorodnym slagaemym”, Matem. zametki, 77:2 (2005), 273–290 | Zbl

[16] Sabitov K. B., Safin E. M., “Obratnaya zadacha dlya uravneniya parabolo-giperbolicheskogo tipa v pryamougolnoi oblasti”, DAN, 429:4 (2009), 451–454 | MR | Zbl

[17] Sabitov K. B., Safin E. M., “Obratnaya zadacha dlya uravneniya smeshannogo parabolo–giperbolicheskogo tipa v pryamougolnoi oblasti”, Izv. vuzov. Matem., 4 (2010), 55–62 | MR | Zbl

[18] Sabitov K. B., Safin E. M., “Obratnaya zadacha dlya uravneniya smeshannogo parabolo–giperbolicheskogo tipa”, Matem. zametki, 87:6 (2010), 907–918

[19] Sabitov K. B., “Zadacha Dirikhle dlya uravnenii smeshannogo tipa v pryamougolnoi oblasti”, Dokl. RAN, 413:1 (2007), 23–26 | Zbl

[20] Ilin V. A., Sadovnichii V. A., Sendov Bl. Kh., Matematicheskii analiz, v. 2, MGU, M., 1987 | MR