On capacitary characteristics of noncompact Riemannian manifolds
Izvestiâ vysših učebnyh zavedenij. Matematika, no. 3 (2021), pp. 67-75

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper we introduce the concept of $L$-massive subsets of non-compact Riemannian manifolds, also their properties are studied. It is proved that non-trivial bounded solution of considered equation exists on non-compact Riemannian manifold if and only if there is $L$-massive set on it. Also proved similar statement for solutions of semilinear equations with finite energy integral.
Keywords: semilinear equation, energy integral, massive sets
Mots-clés : Liouville type theorem.
@article{IVM_2021_3_a5,
     author = {A. G. Losev and V. V. Filatov},
     title = {On capacitary characteristics of noncompact {Riemannian} manifolds},
     journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika},
     pages = {67--75},
     publisher = {mathdoc},
     number = {3},
     year = {2021},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/IVM_2021_3_a5/}
}
TY  - JOUR
AU  - A. G. Losev
AU  - V. V. Filatov
TI  - On capacitary characteristics of noncompact Riemannian manifolds
JO  - Izvestiâ vysših učebnyh zavedenij. Matematika
PY  - 2021
SP  - 67
EP  - 75
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IVM_2021_3_a5/
LA  - ru
ID  - IVM_2021_3_a5
ER  - 
%0 Journal Article
%A A. G. Losev
%A V. V. Filatov
%T On capacitary characteristics of noncompact Riemannian manifolds
%J Izvestiâ vysših učebnyh zavedenij. Matematika
%D 2021
%P 67-75
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IVM_2021_3_a5/
%G ru
%F IVM_2021_3_a5
A. G. Losev; V. V. Filatov. On capacitary characteristics of noncompact Riemannian manifolds. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 3 (2021), pp. 67-75. http://geodesic.mathdoc.fr/item/IVM_2021_3_a5/