On capacitary characteristics of noncompact Riemannian manifolds
Izvestiâ vysših učebnyh zavedenij. Matematika, no. 3 (2021), pp. 67-75
Voir la notice de l'article provenant de la source Math-Net.Ru
In this paper we introduce the concept of $L$-massive subsets of non-compact Riemannian manifolds, also their properties are studied. It is proved that non-trivial bounded solution of considered equation exists on non-compact Riemannian manifold if and only if there is $L$-massive set on it. Also proved similar statement for solutions of semilinear equations with finite energy integral.
Keywords:
semilinear equation, energy integral, massive sets
Mots-clés : Liouville type theorem.
Mots-clés : Liouville type theorem.
@article{IVM_2021_3_a5,
author = {A. G. Losev and V. V. Filatov},
title = {On capacitary characteristics of noncompact {Riemannian} manifolds},
journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika},
pages = {67--75},
publisher = {mathdoc},
number = {3},
year = {2021},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/IVM_2021_3_a5/}
}
A. G. Losev; V. V. Filatov. On capacitary characteristics of noncompact Riemannian manifolds. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 3 (2021), pp. 67-75. http://geodesic.mathdoc.fr/item/IVM_2021_3_a5/