On capacitary characteristics of noncompact Riemannian manifolds
Izvestiâ vysših učebnyh zavedenij. Matematika, no. 3 (2021), pp. 67-75.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper we introduce the concept of $L$-massive subsets of non-compact Riemannian manifolds, also their properties are studied. It is proved that non-trivial bounded solution of considered equation exists on non-compact Riemannian manifold if and only if there is $L$-massive set on it. Also proved similar statement for solutions of semilinear equations with finite energy integral.
Keywords: semilinear equation, energy integral, massive sets
Mots-clés : Liouville type theorem.
@article{IVM_2021_3_a5,
     author = {A. G. Losev and V. V. Filatov},
     title = {On capacitary characteristics of noncompact {Riemannian} manifolds},
     journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika},
     pages = {67--75},
     publisher = {mathdoc},
     number = {3},
     year = {2021},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/IVM_2021_3_a5/}
}
TY  - JOUR
AU  - A. G. Losev
AU  - V. V. Filatov
TI  - On capacitary characteristics of noncompact Riemannian manifolds
JO  - Izvestiâ vysših učebnyh zavedenij. Matematika
PY  - 2021
SP  - 67
EP  - 75
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IVM_2021_3_a5/
LA  - ru
ID  - IVM_2021_3_a5
ER  - 
%0 Journal Article
%A A. G. Losev
%A V. V. Filatov
%T On capacitary characteristics of noncompact Riemannian manifolds
%J Izvestiâ vysših učebnyh zavedenij. Matematika
%D 2021
%P 67-75
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IVM_2021_3_a5/
%G ru
%F IVM_2021_3_a5
A. G. Losev; V. V. Filatov. On capacitary characteristics of noncompact Riemannian manifolds. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 3 (2021), pp. 67-75. http://geodesic.mathdoc.fr/item/IVM_2021_3_a5/

[1] Grigor'yan A., “Analytic and geometric background of recurrence and non-explosion of the Brownian motion on Riemannian manifolds”, Bulletin Amer. Math. Soc., 36 (1999), 135–249 | DOI | MR | Zbl

[2] Vodopyanov S. K., Markina I. G., “Klassifikatsiya subrimanovykh mnogoobrazii”, Sib. matem. zhurn., 36:6 (1998), 1271–1289

[3] Miklyukov V. M., “Nekotorye priznaki parabolichnosti i giperbolichnosti granichnykh mnozhestv poverkhnostei”, Izv. RAN. Ser. matem., 60:4 (1996), 111–158 | MR | Zbl

[4] Avkhadiev F. G., “Integralnye neravenstva v oblastyakh giperbolicheskogo tipa i ikh primeneniya”, Matem. sb., 206:12 (2015), 3–28 | Zbl

[5] Cheng S. Y., Yau S. T., “Differential equations on riemannian manifolds and their geometric applications”, Comm. Pure Appl. Math., 28 (1975), 333–354 | DOI | MR | Zbl

[6] Yau S. T., Nadis S., The shape of inner space, Basic Books, N. Y., 2010 | MR | Zbl

[7] Springer Dzh., Vvedenie v teoriyu rimanovykh poverkhnostei, Izd-vo In. lit., M., 1960 | MR

[8] Korolkov S. A., Losev A. G., “Generalized harmonic functions of Riemannian manifolds with ends”, Math. Zeitshrift., 272:1–2 (2012), 459–472 | DOI | MR | Zbl

[9] Grigoryan A. A., “O suschestvovanii polozhitelnykh fundamentalnykh reshenii uravneniya Laplasa na rimanovykh mnogoobraziyakh”, Matem. sb., 128:3 (1985), 354–363 | MR | Zbl

[10] Keselman V. M., “Ponyatie i kriterii emkostnogo tipa nekompaktnogo rimanova mnogoobraziya na osnove obobschennnoi emkosti”, Matem. fizika i kompyut. modelirovanie, 22:2 (2019), 21–32 | MR

[11] Losev A. G., Filatov V. V., “Dimensions of Solution Spaces of the Schrodinger Equation with Finite Dirichlet Integral on Non-compact Riemannian Manifolds”, Lobachevskii J. Math., 40 (2019), 1363–1370 | DOI | MR | Zbl

[12] Li P., Tam L., “Harmonic functions and the structure of complete manifolds”, J. Diff. Geom., 35:2 (1992), 359–383 | MR | Zbl

[13] Losev A. G., Mazepa E. A., “Ob asimptoticheskom povedenii reshenii nekotorykh uravnenii ellipticheskogo tipa na nekompaktnykh rimanovykh mnogoobraziyakh”, Izv. vuzov. Matem., 43:6 (1999), 39–47 | MR | Zbl

[14] Sung C., Tam L., Wang J., “Spaces of Harmonic Functions”, J. London Math. Soc., 61:3 (2000), 789–806 | DOI | MR | Zbl

[15] Grigoryan A. A., “O liuvillevykh teoremakh dlya garmonicheskikh funktsii s konechnym integralom Dirikhle”, Matem. sb., 132:4 (1987), 496–516 | Zbl

[16] Grigoryan A. A., “O razmernosti prostranstv garmonicheskikh funktsii”, Matem. zametki, 48:5 (1990), 55–61 | MR | Zbl

[17] Grigoryan A. A., Losev A. G., “O razmernosti prostranstv reshenii statsionarnogo uravneniya Shredingera na nekompaktnykh rimanovykh mnogoobraziyakh”, Matem. fizika i kompyut. modelirovanie, 20:3 (2017), 34–42 | MR

[18] Kondratev V. A., Landis E. M., “O kachestvennykh svoistvakh reshenii odnogo nelineinogo uravneniya vtorogo poryadka”, Matem. sb., 135:3 (1986), 346–360

[19] Konkov A. A., “Povedenie reshenii kvazilineinykh ellipticheskikh neravenstv”, SMFN, 7, 2004, 3–158 | Zbl

[20] Mazepa E. A., “O razreshimosti kraevykh zadach dlya kvazilineinykh ellipticheskikh uravnenii na nekompaktnykh rimanovykh mnogoobraziyakh”, Sib. elektron. matem. izv., 13 (2016), 1026–1034 | MR | Zbl

[21] Mazepa E. A., “Liuvillevo svoistvo i kraevye zadachi dlya polulineinykh ellipticheskikh uravnenii na nekompaktnykh rimanovykh mnogoobraziyakh”, Sib. matem. zhurn., 53:1 (2012), 165–179 | MR | Zbl

[22] Mazepa E. A., “Kraevye zadachi i liuvillevy teoremy dlya polulineinykh ellipticheskikh uravnenii na rimanovykh mnogoobraziyakh”, Izv. vuzov. Matem., 49:3 (2005), 59–66 | MR | Zbl

[23] Mazepa E. A., “O suschestvovanii tselykh reshenii odnogo polulineinogo ellipticheskogo uravneniya na nekompaktnykh rimanovykh mnogoobraziyakh”, Matem. zametki, 81:1 (2007), 153–156 | MR | Zbl

[24] Verbitsky I. E., “Pointwise estimates of solutions and existence criteria for sublinear elliptic equations”, Math. Phys. and Comput. Sim., 20:3 (2017), 18–33 | MR

[25] Landis E. M., “O zadache Dirikhle dlya polulineinykh ellipticheskikh uravnenii”, Nelineinye granichnye zadachi, 3 (1991), 49–53 | MR

[26] Timan A. F., Trofimov V. N., Vvedenie v teoriyu garmonicheskikh funktsii, Nauka, M., 1968

[27] Gilbarg D., Trudinger M., Ellipticheskie differentsialnye uravneniya s chastnymi proizvodnymi vtorogo poryadka, Nauka, M., 1989

[28] Losev A. G., Filatov V. V., “Teoremy tipa Liuvillya dlya reshenii statsionarnogo uravneniya Shredingera s konechnym integralom Dirikhle”, Vestn. Volgogradsk. gos. un-ta, Ser. 1, Matem. Fizika, 36:5 (2016), 12–23